APPENDIX III

Paul Johnson Cruise Highlights

A Geophysical Investigation of Two New Eruption Sites on the Juan de Fuca and Gorda Ridges

Field Program; September, 1996

P.I. - H. Paul Johnson University of Washington

Science Party

Johnson, H. Paul Tivey, Maurice Holmes, Mark Van Patten, Darcy Pruis, Matt Nelson, Erin Hutnak, Michael Ruppel, Byron Rees, Sheri Johnson, Matthew

JASON Group

Andy Bowen, Tom Crook, Bob Elder, Skip Gleason, Peter Lemmond, Craig Sayers, Will Sellers, Hanu Singh, Bob Waters, Bob Williams

ABE Group

Al Bradley, Dana Yoerger, Rod Catanach, Al Duester, Steve Libertore

Large-Scale Goals:

To study the Formation and Evolution of Oceanic Crust; particularly the Near Zero-age Changes in Physical Properties of Young Lava Flows.

Specific Goals for 1996 program:

- 1. pick up sea floor magnetometers/tiltmeters
- 2. repeat previous magnetic surveys of New Flow
- 3. deploy thermal blanket in young crustal rocks
- 4. recover additional rock samples from eruption site
- 5. survey 10-year-old flows in same area
- 6. investigate January, 1996 eruption on Gorda Ridge

Continuation of Time Series of Geophysical Measurements on the CoAxial Eruption Site

1993 - ALVIN

1994 - TURTLE/ATV (Navy assets)

1995 - ALVIN (+ ABE)

1996 - JASON (+ ABE)

1997 - JASON (recovery of mag/tiltmeters from Gorda)

SCIENTIFIC RESULTS

- **1. MAGNETICS** magnetization seems to be decreasing systematically over three year period. Axial 'notch' in middle of New Flow is growing (due to alteration).
- **2. GRAVITY** CoAxial New Flow has a very low density and high porosity near 28%. Surrounding lava flows are higher in density, and have porosities of 11 to 13%. This implies a high permeability and predicts mechanical collapse soon after formation.
- 3. **HEAT FLOW** bare rock HF measurements indicate that the extrusives cool by internal convection very quickly, and after 10 years have heat flux values near ambient.

RESULTS - Hardware

JASON - worked very well. Had several long dives, including one 84 hours long. Recovered and deployed sea floor magnetometers, deployed heat flow blanket 13 times, recovered rocks, near-bottom magnetometer and Mesotech survey, CTD data, superb video. Use of elevators allows almost unlimited payload. mature, reliable vehicle.

ABE - our third cruise with this vehicle. Worked very well.

Fly pre-determined course with remarkable accuracy.

Constant altitude, constant depth. Magnetometer, CTD, photos.

now a working vehicle.

Acquisition of Magnetization

Summary of Gravity Data from New Flow Site

	density	porosity
Flow Site, Average	2.63	17%
Old Flows, Only	2.62	18%
New Flow, Only	2.42	29%

Cage Seamount

Cage Seamount

Cage Seamount

CONDUCTIVE HEAT FLOW AS A FUNCTION OF CRUSTAL AGE

measurements using the bare rock heat flow pad

THREE METER DRILL

- * Built by Williamson for University of Washington, in 1990; successfully deployed on Juan de Fuca Ridge, and off-Hawaii
- * lost on EPR at 9° 30' N (wrapped around ODP guidebase)
- * developed the technology for diamond drilling on the sea floor. power and data transfer over long cables.

Plot of NRM of Juan de Fuca rocks vs LOG (age)

Alternative Drilling Platforms

SMALL, OVER-THE-SIDE ROCK DRILLS

[at least the ones built by Williamson and Associates, Seattle]

ADVANTAGES

- * can drill bare rock
- * diamond bit (100% recovery)
- * deployable from UNOLS fleet
- * less in demand than RESOLUTION
- * potentially shorter time constants than ODP proposals

Data Logger / Tiltmeters