APPENDIX IV-A

ALVIN POWER EVOLUTION

Notes:

- 1. C/L is Cycle Life
- 2. WW is total Water Weight of battery tanks
- 3. Cost is for installed cells only, no spares for rotation

1964-1966

- Tanks: 3
- Cells: (75) 2v cells (Olympic)
- (30) 12v cells (Exide)
- Cap: 2v = 05ah, 12v=60ah (37.35kwh total)
- Volts: 30/30/60 (9.45kwh sci/6.3kwh cont./21.6kwh prop.)
- C/L: <50 cycles
- WW: 1600#
- Cost: ?

Comments:

- 1. As delivered design
- 2. Separate batteries for science, control and propulsion functions

1967-1985

- Tanks: 3
- Cells: (45) 6v batteries
- Cap: 150 ah (40.5 kwh total)
- Volts: 30/60 (13.5 kwh cont./27.0kwh prop.)
- C/L: >200 cycles
- WW: 1740#
- Cost: \$3,760

Comments:

- 1. Greater capacity
- 2. Simplified circuitry (science/control combined and prop
- 3. Better tank design (less ground potential)
- 4. Common battery throughout
- 5. Longer life
- 6. Heavier batteries

1986-1987

- Tanks: 3
- Cells: (I 50) 225ah 2v cells, (I 5) 150ah 2v cells (Exide tubular)
- Cap: 450ah@120v propulsion/450ah@30v control/150ah@30v reserve (67.50kwh)
- Volts: 120/30/30 (54kwh propulsion, 13.5kwh control 4.5kwh reserve)
- C/L: >200
- WW: 3545#
- Cost: \$19,035

Comments:

- 1. Heavier batteries
- 2. Added -1 000# of foam flotation
- 3. Removed reserve steel ballast
- 4. Increased propulsion power
- 5. Changed propulsion to electric thrusters

1988

- Tanks: 3
- Cells: (I 50)200ah 2v cells (KW tubular plate), (I 5) 150ah 2v Exide tubular
- Cap: 400ah @)120, 400ah@30v, 150ah@30v, (60.Okwh useable)
- Volts: 120/30/30 (48kwh propulsion/12kwh control/ 4.5kwh reserve)
- C/L: >200
- WW: 3145#
- Cost: \$8,721

Comments:

- 1. Exide source unreliable, changed to KW tubular plate
- 2. Increased payload
- 3. Decreased cost
- 4. Decreased propulsion power
- 5. Still have control/propulsion imbalance

1989

- Tanks: 2
- Cells: (120) 200ah 2v cells (KW tubular)
- Cap: 400ah @ 120v (48kwh useable)
- Volts: 120 (all useable as mission demands)
- C/L: >200
- WW: 2500#
- Cost: \$5,670

Comments:

- 1. Added 120vdc-24vdc converters to eliminate 30V battery requirement
- 2. Reduced weight
- 3. Reduced power
- 4. All power available as required

1991-present

- Tanks: 2
- Cells: (120) 190ah 2v cells (Douglas flat plate)
- Cap: 380ah@120v (45.6kwh useable)
- Volts: 120
- C/L: >200
- WW: 2900#
- Cost: \$7,169

Comments:

- 1. KW tubular plate stopped production (EPA), Douglas 190ah flat plate closest fit
- 2. 1991 design study of battery configuration alternatives (Appendix A)

- 3. Unsuccessful pressure tolerant controller effort to reduce weight for third battery

- 4. Increased weight
 5. Reduced power
 6. Instituted battery rotation program (four MO in service, not six MO) to maintain capacity.
 7. Large equipment growth (cameras, HMI's, Mesotech, video equipment)

1997-Future options

	Trojan Pb	Cl Can. Pb	Saft NiCd	Ovonic NiMH
Tanks:	2	2	2	3
Cells:	(120)2v	(120)2v	(200)1.2v	(60)12v
AH/cell	260	180	208	90
Cap:	62.4kwh	43.2kwh	49.9kwh	64.8kwh
Volts:	120	120	120	120
CL:	>1000	>1000	>1000	>600
WW	2600	1950	2000	1400
Cost:	\$9,168	\$11,213	\$140,000	\$42,000
Risk:	low	low	high	very high