
INMARTECH 2006

2006 International Marine Technicians Symposium

A Summary of Performance Tests Conducted on 3x19 Wire Rope

Presented by Rick Trask Woods Hole Oceanographic Institution

Outline

- Brief History of UNOLS Wire Rope Suppliers
- Concerns
- UNOLS Wire Rope Specification
- Test Program
 - Test facility
 - Samples tested
 - WRCA
 - Loos
 - Tests conducted
 - Description of the test
 - Performance of WRCA samples
 - Performance of Loos samples
 - Test program limitations
- Next Series of Wire Tests

History of Wire Rope Suppliers

	1984	1999	2002	2003
The second		The second second		The second
US Steel	MacWhyte	Wire Rope	WRCA	WRCA
supplies	Co.	Corporation	files for	emerges
torque-	purchases	of America	bankruptcy	from
balanced	US Steel	(WRCA)		bankruptcy
product	torque-	purchases		Pro la And
	balanced	MacWhyte		
	wire rope			
	product			
	line			

Concerns

- Since the product line has changed hands several times, do the products we purchase meet the UNOLS specification for general purpose oceanographic wire rope?
- Given the previously precarious financial history of our current supplier, are there other manufacturers of 3x19 wire rope whose products meet the specification?

Specification for General Purpose Oceanographic Wire Rope

- Dated January 1986
- General Purpose: Serving many varied and unpredictable applications:

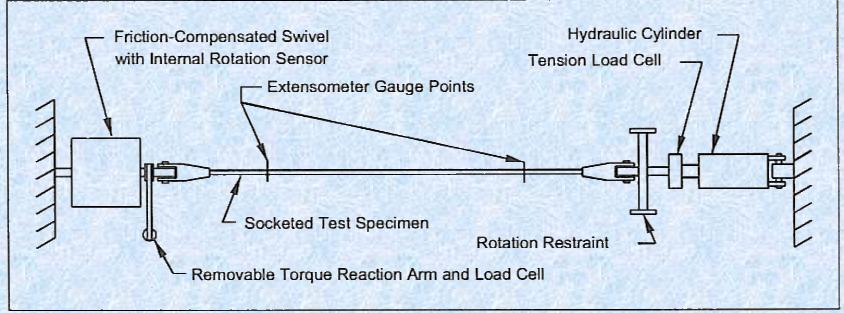
Rock dredging Gravity coring Piston coring Plankton tows Mid-water trawling Dragging operations Tripod lowerings Hydrographic casts

General Elements of the UNOLS Wire Rope Specification

- Rotational stability
- Best possible strength to weight ratio
- Highest elastic limit attainable.
- Flexure tolerance
- Tension cycling
- Service life, minimum of 3 years under "normal" service
- Size specifications, diameter and length

Wire Testing Program 2005

- Conducted by Tension Member Technology in Huntington Beach, CA under the direction of Phil Gibson
- Samples of 3x19 wire from WRCA and Loos Co.
 - WRCA Torque Balanced product
 - WRCA Nilspin Product
 - Loos standard non-rotation product
- Sizes tested:
 - 3/16", 1/4", 3/8", 7/16", 1/2" and 9/16"
- The 1/4", 1/2" and 9/16" were unjacketed samples.


Types of Tests

- Tension, Elongation, Torque, and Rotation (TETR)
- Tension-elongation breaking strength (TEB)
- Cyclic Bend Over Sheave (CBOS)
- Cyclic Straight Tension (CST)

Test Number 1

Tension, Elongation, Torque and Rotation Test

Test Number 1: Tension, Elongation, Torque and Rotation Tests

- Tension applied by hydraulic cylinder and measured by a strain gauge load cell.
- Rotation measured by a friction compensated swivel which uses active compensation to minimize swivel bearing friction.
- Elongation measured by an extensometer attached to the center section of the test specimen.
- Torque measured using a torque reaction arm and load cell attached to the swivel shaft.

Test Number 1 TETR Test Setup

Tension Member Technology Huntington Beach, CA

Test Number 1
TETR Test SetupTension Member Technologies
Huntington Beach, CA

Test Number 1 Tension, Elongation, Torque, and Rotation (TETR) (continued)

- Samples terminated by TMT
- Each of 14 samples repeatedly loaded to a tension of 45% of the rated breaking strength
- Torque arm locked in place while elongation and torque measurements were made and disconnected for the rope rotation measurement.
- Only one sample of each size and manufacturer tested.

UNOLS Performance Specification for Rotation

"The finished rope shall not rotate about its axis more than 5° per foot at 45% of Rated Breaking Strength. Also, a change in tensile loading equal to 10% of RBS shall not produce axial rotation greater than 1° per foot."

Test Number 1 Tension, Elongation, Torque, Rotation Results WRCA Ropes

Sample No.	Rope Dia.	Cycle 20 Perm. Rot. Set	Peak Rotation	Tension at Peak Rotation	Rotation at 45% RBS
		[deg/ft]	[deg/ft]	[lb]	[deg/ft]
01	3/16	-13.86	-3.38	300	-0.14
09†	1/4	-3.55	-1.45	1,400	-1.12
13	1/4	-1.23	-1.84	2,800	-1.76
25†	3/8	-2.68	5.40	5,300	4.67
37†	7/16	-2.10	2.83	8,300	2.77
47	1/2	0.25	6.10	10,800	5.89
59	9/16	-2.16	-2.88	4,700	-2.00

† Jacketed Sample

Test Number 1 Tension, Elongation, Torque, Rotation Results Loos Ropes

		Cycle 20		Tension	Rotation
Sample	Rope	Perm.	Peak	at Peak	at 45%
No.	Dia.	Rot. Set	Rotation	Rotation	RBS
		[deg/ft]	[deg/ft]	[lb]	[deg/ft]
05†	3/16	-7.00	-8.41	1,700	-8.27
19	1/4	-2.60	-0.63	900	-0.50
31†	3/8	-2.10	-7.16	4,800	-7.15
42†	7/16	-1.00	-3.31	9,000	-3.31
53	1/2	-0.90	2.22	11,100	2.11
65	9/16	-0.50	-4.67	14,600	-4.67

† Jacketed Sample

Test Number 2

Tension-Elongation Breaking Strength Test

Test Number 2 Tension-Elongation Breaking Strength

- Rope elongation measured with an extensometer with the gauge points attached directly to the center of the sample
- Each of 42 samples were pulled to break in a single load cycle.
- Samples terminated at WHOI
- Performance Specification: Samples are expected to meet the minimum acceptable values for RBS and Elastic Limit

UNOLS Performance Specification Breaking Strength and Elastic Limit

Wire Size	Breaking Strength (min) [lbs]	Elastic Limit [lbs]
3/16"	4,000	3,000
1/4"	6,750	5,000
3/8"	14,800	11,100
1/2"	25,700	19,300
9/16"	32,500	24,400

Test Number 2 TEB Test Setup

Tension Member Technologies Huntington Beach, CA

Test Number 2 Breaking Strength and Elastic Limit Results

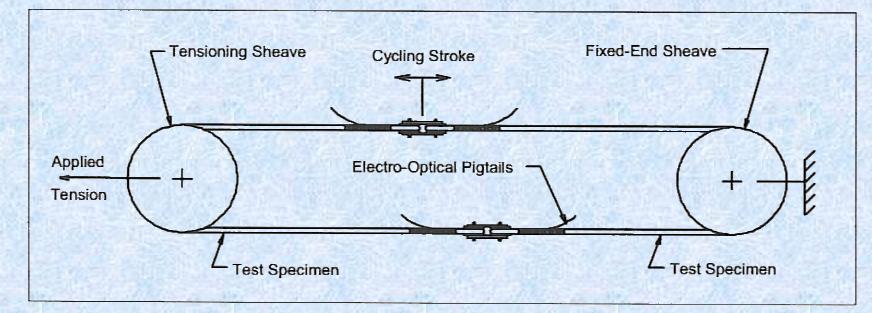
WRCA Ropes

11/21/2		WRCA	Ropes		2013
	175		Required		Specified
Sample	Rope	Breaking		Elastic	Elastic
No.	Dia.		Strength	Limit	Limit
15.82		[lbs]	[lbs]	[lbs]	[lbs]
	105	20	1000		
2	3/16	4,600	4,000	3,200	3,000
3	3/16	4,650		3,000	Since
4	3/16	4,650		3,000	THE NEW
in the second					Sin .
10	1/4	8,100	6,750	5,000	5,000
11	1/4	8,050	- (******	5,400	
12	1/4	8,000	122.53	5,000	1992-10
7	1.439	100 M 12	1997 A		02
14	1/4	7,550	6,750	5,400	5,000
15	1/4	7,450	Sental A	5,700	4
16	1/4	7,500		5,500	
2020	1846 - P.S.	1000			
26	3/8	15,600	14,800	12,300	11,100
27	3/8	15,750	2623	13,100	
28	3/8	15,800		11,100	<u> </u>
20	7/4/	01.000	00.000	10.000	15.000
38	7/16	21,900	20,000	18,000	15,000
39	7/16	21,400	A CONTRACTOR	15,000	
40	7/16	21,000		15,000	
48	1/2	22 000	26 000	10.000	10 700
48	1/2 1/2	22,800 22,600	26,000	19,000 18,700	19,700
49 50	1/2	22,800		18,700	
30	1/2	21,300	210	17,200	the state
60	9/16	30,800	32,500	23,800	24,400
61	9/16			24,400	
62	9/16			22,600	The second

Test Number 2 Breaking Strength and Elastic Limit

Loos Ropes

2.182	Loos Ropes						
			Required		Specified		
Sample	Rope	Broaking	Breaking	Elastic	Elastic		
No.	Dia.	Strength	Strength	Limit	Limit		
NU.	Dia.	[lbs]	[lbs]	[lbs]	[lbs]		
		[103]	[103]	[103]	[105]		
6	3/16	4,650	4,000	3,500	3,000		
7	3/10	4,900	4,000	3,000	3,000		
8	3/10	4,900		4,000	AND NOT		
0	5/10	4,700		4,000			
20	1/4	7,900	6,750	4,200	5,000		
21	1/4	7,850	0,750	3,200	5,000		
22	1/4	7,900	112 12	4,000			
22	1/4	7,900		4,000			
32	3/8	14,450	14,800	8,000	11,100		
33	3/8	14,200	14,000	9,400	11,100		
34	3/8	14,150		7,400			
	5/0	14,150	Se Valse		PERCENT		
43	7/16	20,900	20,000	13,500	15,000		
44	7/16	21,150	20,000	10,000	10,000		
45	7/16	21,150	- 022		- 97		
	1110	21,100		12 NY	Jac waste		
54	1/2	26,550	26,000	17,800	19,700		
55	1/2	25,650	a stienter	11 S. S. S.	In the second		
56	1/2	26,400		17,200	ALC: NO.		
Sec. 1997	Walk	1. Sec. 10	SAR SIS	-42. 9			
66	9/16	33,500	32,500	18,200	24,400		
67		33,100	2	16,300	Designation of the		
68	9/16			18,200	- Land		
				the second second second			


Test Number 3

Cyclic Bend Over Sheave Test

Test Number 3 Cyclic Bend Over Sheave

- Samples tested over a pair of sheaves having a pitch diameter 30 times the nominal rope diameter, and groove diameter 5% larger than the nominal rope diameter.
- Samples tensioned to 40% of the breaking strength at a cycling rate of 500 bending cycles per hour.

Test Number 3 Cyclic Bend Over Sheave Fatigue Test

•Motor attached to one sheave to drive the samples.

•A section of each sample passed onto, around and off of the sheave during each stroke (straight, bent, straight cycle with each stroke).

UNOLS Performance Specification for Flexure Tolerance

"Withstand = 50,000 flexure cycles over sheaves 30 times the wire O.D. at 35-40% of the RBS without failure of individual wires. Degradation in strength shall not exceed 5% of RBS. This is estimated to be 150% of flexures in a sheave train for 500 casts to oceanic depths. (Includes flexures at the over-boarding sheave due to ship motion.)"

Test Number 3 Cyclic Bend Over Sheave Test Results WRCA Ropes

and the second se					And the second second second
				Bend Cycles	
	Sample	Rope	Applied	Completed	
	No.	Dia.	Tension	Before Break*	1.200
6					
	18	1/4	2,700	4,460	
	30	3/8	5,920	5,008	
			List of		
	52	1/2	10,400	3,964	
5					312
Sč	64	9/16	13,000	5,242	
					Sec. 20
* S	pecificatio	on calls fo	or a minim	num of 50,000 cy	/cles
100	30 12 13 13				

Test Number 3 Cyclic Bend Over Sheave Test Results Loos Ropes

				Bend Cycles	
Sam	nple	Rope	Applied	Completed	
N	0.	Dia.	Tension	Before Break*	
Percentary 1	12 12 /		在 最佳地		
2	4	1/4	2,700	12,142	
	ALC: NO				
3	6	3/8	5,920	3,958	
5	8	1/2	10,400	3,702	
7	0	9/16	13,000	4,552	
* Specifi	cation	calls fo	or a minim	num of 50,000 cy	cle

Test Number 4

Cyclic Straight Tension Test

Test Number 4 Cyclic Straight Tension (CST)

- Horizontal orientation with a strain gauge load cell to a servo controlled hydraulic cylinder.
- Tensioned between a near zero tension to 40% of the rated breaking strength at a rate of 1200 load cycles per hour.

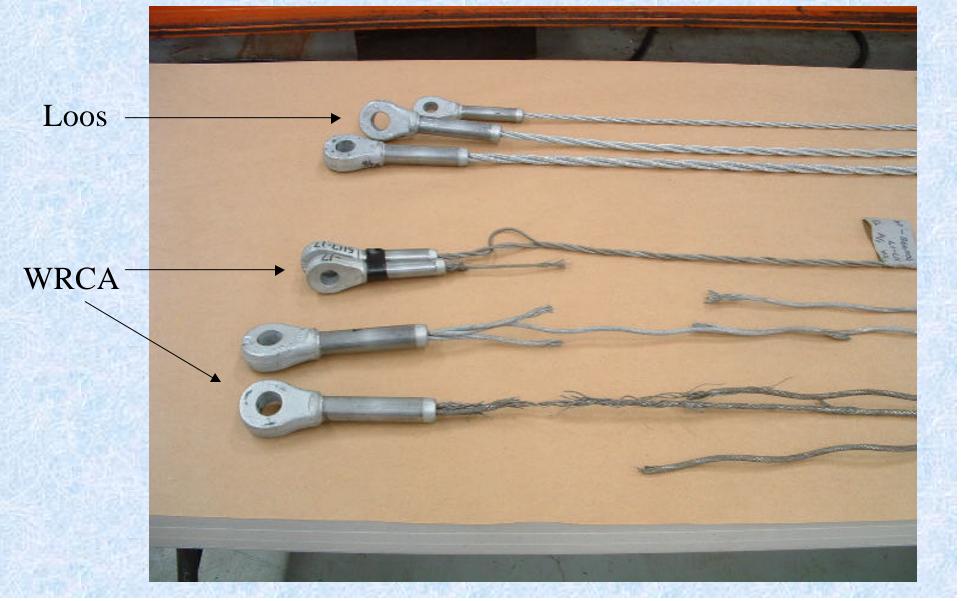
UNOLS Performance Specification for Tension Cycling

"Withstand = 50,000 cycles in tension from 0 to 40% of the RBS at an 8 second period without failure of individual wires.
Degradation in strength shall not exceed 5% of the RBS. This value is considered to be representative of tension variations due to ship motion and pay-out / haul-in speeds for 500 casts to oceanic depths."

Test Number 4 CST Test Setup

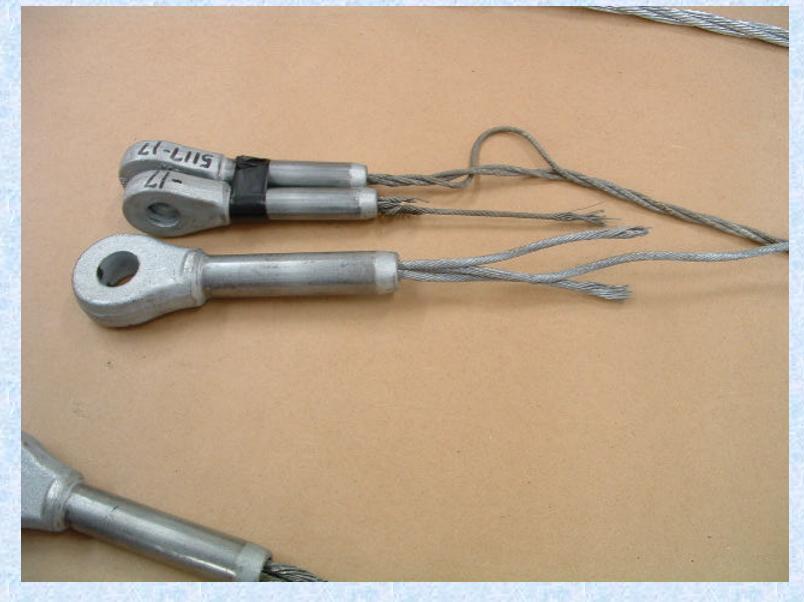
Tension Member Technologies Huntington Beach, CA

Test Number 4 Cyclic Straight Tension Test Results WRCA Ropes


Sample	Rope	Max.	Load cycles
No.	Diameter	Tension	Completed
	[in]	[lbs]	[lbs]
一次代达			
17	1/4	2,700	47,649
29	3/8	5,920	40,108
41	7/16	8,000	27,171
	Helever K		
51	1/2	10,400	20,728
63	9/16	13,000	22,573

Test Number 4 Cyclic Straight Tension Test Results Loos Ropes

Sample	Rope	Max.	Load cycles
No.	Diameter	Tension	Completed
	[in]	[lbs]	[lbs]
		1. 1. 1. 1.	and the second
23	1/4	2,700	50,000
35	3/8	5,920	50,000
46	7/16	8,000	50,000
57	1/2	10,400	50,000
	AN US ST		
69	9/16	13,000	25,708


Test Number 4 CST Test Samples

Tension Member Technologies Huntington Beach, CA

Test Number 4 CST Test Samples

Tension Member Technologies Huntington Beach, CA

Testing Program Limitations

- Limited number of duplicate samples
- Duplicate samples from same production run

Next Series of Wire Tests

- For 9/16" diameter 3x19 Trawl Wire
- Use CBOS to estimate rope fatigue life for a range of tensions and sheave diameters.
- Relate loading and sheave size in terms of "Life Factor"
- Life Factor = <u>Rope Breaking Strength</u> x <u>D</u> Load d
 LF Low loads and large sheave dia.
 - <LF High loads and small sheave dia.

Next Series of Wire Tests (continued)

- The CBOS tests conducted for a range of "life factors" until rope failure will provide the number of bend cycles to rope failure.
- Develop a relationship between "Life Factor" and rope fatigue life.
- Use relationship as a predictive tool to aid in determining when the rope should be considered for retirement.

Next Series of Wire Tests (continued)

- Repeat the previous tests but stop after reaching half the bend cycles and break the sample. Provides residual strength at the half way point.
- Repeat again but stop after 3/4 of the ropes life and break the sample.
- Yield information about how rope strength diminishes with increasing bend cycles.

Discussion Topics

None of the wire ropes tested met all the UNOLS wire rope specifications.

- Is the situation as bad as it seems?
- Are these results consistent with field experience?
- Given the field performance of these ropes, is the current specification too demanding?
- Do these test results indicate the need for a re-evaluation of the current specification?
- In future purchases, how do we make sure we get what we think we are getting?

Thank you

Any additional questions?