Northwest Association of Networked Ocean Observing Systems

The Integrated Ocean Observing System (IOOS)
Regional Association for the Pacific NW

www.nanoos.org
U.S. Integrated Ocean Observing System (IOOS)

• **IOOS Vision:**
A fully integrated ocean observing system to provide service to the Nation through:
• improved ecosystem and climate understanding;
• sustained living marine resources;
• improved public health and safety;
• reduced impacts of natural hazards and environmental changes; and
• enhanced support for marine commerce and transportation.

• **IOOS Mission:**
Lead the integration of ocean, coastal, and Great Lakes observing capabilities, in collaboration with Federal and non-Federal partners, to maximize access to data and generation of information products, inform decision making, and promote economic, environmental, and social benefits to our Nation and the world.
CONSISTENT NATIONAL CAPABILITY

Reg. Assn’s

assure

Leverage and Link

engage

DIVERSE LOCAL STAKEHOLDERS
NANOOS serves the Pacific Northwest

Coastal ocean:
Northern extent of California Current
Winds, topography, freshwater input, ENSO & other climate cycles

Major inland basins:
Puget Sound-Georgia Basin, Columbia River
Urban centers, nearshore development, climate variation

Coastal estuaries:
Willapa Bay, Grays Harbor, Yaquina Bay, Coos Bay
Resource extraction, development, climate

Shorelines:
Rocky to sandy, dynamic: storms, erosion
Winds, development, climate

NANOOS Region User Groups:
Maritime: shipping, oil transport/spill remediation
Fisheries: salmon, shellfish, crab, aquaculture
Environmental management: HABs, hypoxia
Shoreline: erosion, inundation
Hazards: Search and rescue, national security
Educators: formal, informal, research
Marine recreation: boating, surfing, diving
PNW Ocean Observing Systems Design

NANOOS RCOOS Enhancement Conceptual Design
- Proposed new coastal buoy
- Existing coastal buoy to be sustained
- Existing estuarine buoys* to be sustained in partnership
- Existing glider track to be sustained
- Proposed new long-range HF site
- Existing long-range (180 km range) HF site to be sustained in partnership
- Existing standard-range (50 km range) HF site to be sustained in partnership
- Proposed new port wave radars
- Shoreline assessment to be sustained in partnership

*Estuarine buoys are more numerous than symbols

OOI Conceptual Design
- Coastal mooring
- Cabled mooring
- Deepwater column mooring
- High voltage primary node
- Medium voltage primary node
- RSN cable
- Glider track
- Glider
“A multi-platform high-resolution coastal ocean observing sensor array for researching Washington coastal waters and ecosystem response to climate change.”

Funded by Murdock Charitable Trust & UW now sustained as part of NANOOS
Realtime ChaBa Data: Temperature °C

ChaBa during cruise

Year 2014
UPWELLING WINDS

a) wind direction (deg. true coming from)

DOWNWELLING WINDS

ChabA 2014 Temperature [°C] 6/25-10/23
Better definition of Columbia River influence

Effort:

• Observations
• Modeling/forecasts
• Data management and communication
• Tailored user-driven products
• Outreach
• Education
NVS for specific user groups with targeted subsets of the data

ApL-UW NPB-1
Meteorological sensors were redeployed on Oct 1, and are now available on NVS.
Updated on 3 Oct 2014

CMOP Saturn02
Summer-deployment buoy has been recovered, and returned as only a seasonal aid to navigation (no monitoring sensors) during winter. Next sensor deployment will be in late April or May 2015.
Updated on 30 Sep 2014

CMOP Saturn08
New monitoring LOBO buoy now on NVS. First deployed Sept 2013.
Added on 29 Sep 2014

CMOP Saturn09
New monitoring LOBO buoy now on NVS. First deployed Sept 2013.
Added on 29 Sep 2014
What are people saying about NANOOS?

“NANOOS provides critical life safety information to the public, aiding coastal communities to build resiliency.”
- Jonathan Allan, Coastal Geomorphologist
Oregon Department of Geology and Mineral Industries

“This current generation of shellfish farmer is reliant upon data and services from NANOOS. Checking the NANOOS app before seeding a beach or filling a setting tank has become standard practice.”
- Margaret Barrette, Pacific Coast Shellfish Growers Association Director

“Ships crossing the Columbia River Bar face one of the most dangerous harbor entrances in the world. The Columbia River Bar Pilots rely on weather forecasts, real time buoy data along with wave and current models when determining safe times for ships to cross the bar. NANOOS provides an excellent location for us to see and compare all the available data sources.”
- Captain Dan Jordan, Columbia River Bar Pilots
NANOOS focus group to ID what data sets and functions shellfish growers need

“I want it like THIS!”
‘Like putting headlights on a car’
Pacific oysters gain from IOOS® data

About six years ago, production at some Pacific Northwest oyster hatcheries began declining at an alarming rate, posing severe economic impact and challenging a way of life held by shellfish growers for more than 130 years.

By 2008, the oyster harvest at Whiskey Creek, a major Oregon supplier to the majority of West Coast oyster farmers, plummeted 80 percent. At about the same time, corrosive, acidic seawater was hitting the shores of the Pacific.

Something had to be done. Oyster production accounts for more than $84 million of the West Coast shellfish industry, which supports more than 3,000 jobs.

“When you see oyster shells dissolving in water, there’s a compelling need to know why,” says Bill Dewey of Taylor Shellfish Farms in Washington state.

Thanks to a $500,000 federal investment in monitoring coastal seawater strengthened by data and observational information from the U.S. Integrated Ocean Observing System (IOOS®) and the NOAA Ocean Acidification Program, oyster hatcheries on the verge of collapse just a few years ago are again major contributors to the $111 million West Coast shellfish industry.

IOOS is a NOAA-led interagency and regional effort aimed at “knowing” — that is, ensuring that we have the data and information we need to protect our oceans, coasts, and coastal communities.

IOOS partners in the Northwest Association of Networked Ocean Observing Systems (NANOOS) deployed this buoy in 2010 as part of a three-piece observing array to assess issues in the Northwest, including ocean acidification, hypoxia and harmful algal blooms, and climate change. The coastal buoy will aid computer models that predict ocean and atmospheric conditions. Known as “Chú ba,” the buoy is named for the Native American word (pronounced “chaw’ buh”) for “whale tail.”

(Photograph courtesy of Dr. John Payne, Pacific Ocean Shelf Science).
Useful tools from NANOOS’ data portal, the NANOOS Visualization System (NVS)

The [NVS Data Explorer](http://nvs.nanoos.org/Explorer) serves hydrographic and atmospheric data from fixed and mobile platforms, satellite imagery, and computer models to provide real-time conditions and forecasts.

The specialized [NVS Shellfish Growers](http://nvs.nanoos.org/ShellfishGrowers) app provides real-time pH, pCO₂, oxygen, salinity, temperature, and other data, allowing for better management and decision making for the shellfish industry, tribes, and state managers.
Ocean Observatories Initiative (OOI) Coastal Endurance Array moorings and sea-bed platforms were deployed off the Oregon and Washington coast starting in April 2014 and are actively collecting data.

Some OOI data products are available at the OOI Data Site, and more will be released throughout 2016. NVS currently ingests a subset of instruments deployed on this station; instrument coverage will be expanded throughout 2016.
Near-real-time data now integrated into NVS, currently for a subset of instruments deployed on this station including (depending on the platform) meteorological & waves; and water temperature, salinity, pressure & dissolved oxygen at up to 3 depths.

21 Jul 2016
OII platform added to NVS in inventory mode only (no data), to facilitate discovery and access to these assets. Appropriate near-real-time data are not readily accessible yet but will be integrated when available. See Details tab for more information.

17 Feb 2016
NANOOS observations and data
Recent Advances in NANOOS

Measuring HABs Remotely

The IOOS-supported "Environmental Sample Processor" was deployed off La Push at our NEMO buoy and is relaying data on harmful algal bloom (HAB) species and domoic acid toxin concentration through the NVS portal.

“Having the NANOOS automated HAB sampler, with toxin assessment capability gives tribes the forewarning they need to adjust sampling protocols and better protect the health of coastal residents, tribal and non-tribal.” - Joe Schumacker, Quinault Indian Nation

Visualizing Climatologies

The NVS Climatology app provides users with a rich interface of long-term average conditions (climatology) and present-day departures from average (anomaly). Data visualizations are from buoys, satellites, and weather stations in the Pacific Northwest, enabling users to compare current conditions against conditions measured in the past.

NANOOS hosted a Pacific Anomalies 2 Workshop
Partnerships

with federal, academic, state, industry partners
Cha’ba is a national OA buoy...

Strategy for OA Observations

PMEL is developing a global network of ocean acidification observations

The existing global carbon observatory network of repeat hydrographic surveys, time-series stations and ship-based underway surface observations in the open ocean provide a strong foundation of carbon chemistry observations to begin addressing the problem of ocean acidification. Indeed, much of our present understanding of the long-term changes in the carbon system is derived from the repeat ocean sections and time-series measurements.

A major project for our group is to expand the global moored and ship-based network by adding pH and other biogeochemical measurements to provide important information on the changing conditions in the open ocean and coastal waters. See the map of planned monitoring sites to the right. This network will provide a better understanding of the temporal and spatial scales of variability in ocean carbon chemistry and biology and the observational basis for developing predictive models for future changes in ocean acidification and its consequences for marine ecosystems.

Location of planned OA monitoring and research sites and affiliated NOAA labs.

U.S. coastal and estuarine environments do not currently have coordinated carbon observing networks, as in the open ocean, and are presently grossly under-sampled. There is a critical need for intensive time series measurements on moored buoys and repeat hydrographic cruises in high productivity coastal and estuarine systems as CO₂ and carbonate ion concentrations in these waters can vary substantially on timescales from hours to decades due to tides, photosynthesis, and river or ground water inputs. In response to that need, we are adding carbon and pH sensors to...
Figure 9. The mole fraction of carbon dioxide (xCO₂) in air at 1.5 m above seawater and in surface seawater at 0.5 m depth on the surface Chá Bă mooring off La Push, WA, and on the NDBC mooring 46041 off Cape Elizabeth, WA. Globally averaged marine surface air 2015 annual mean xCO₂ value of 399 ppm is indicated with a dashed line in each panel. Typical uncertainty associated with quality-controlled measurements from these systems is < 2 ppm for the range 100–600 ppm.
data transmitted to surface mooring by cell modem in telebuoy (~400 m from surface mooring)

45° syntactic foam float
float depth 15 m in winter
10 m in summer

SBE 37 MicroCat
17 m stopper

ADCP 600kHz Workhorse

inductive coupler (ICC)

McLane profiler
with CTD, O2, velocity, fluorescence,
turbidity and SUNA nitrate sensors

SeaFET!

data telemetered to shore near real-time

anemometer
rain gauge
air temp., relative humidity
pCO2 sensor (atmos)
cell modem, VHF modem

WOM+ISUS
(CTD, Fluorescence,
backscatter, O2 and nitrate)

SBE 37 MicroCat
SAMI pH
SeaBird 16 CTD
inductive coupler (ICC)

ADCP 300 kHz Workhorse
SBE 39 T-logger (5 total)
SBE 37
SBE 39
SBE 39
SBE 37
SBE 37
SBE 37
SBE 39
SBE 37
SBE 39
SBE 37 with DO

Benthic glass float
double BBE CARTR releases
with recovery line camera

Benthic RSIS releases
with recovery line camera

120 m stopper

90 m stopper

Seabird
Near-term predictions of OA in Washington

3-Day forecast appears daily on NANOOS

WA OA Center: Parker MacCready, Samantha Siedlecki, UW
Breaking ground to seasonal ecosystem forecasting: hypoxia, OA, sardines

NOAA FATE: Siedlecki et al., UW
WA OA Center monitoring: bioindicator

- Pteropod shells show signs of dissolution
- Patterns in time and space help us understand impacts and drivers

Photos: Johnson & Bednarsek
The GOA-ON interactive data portal
Featuring global OA data, asset inventory, metadata, data synthesis products, etc.
The GOA-ON interactive data portal
complex area...