Part I: ADCP

- Getting Ocean Velocity
- ADCP Acquisition Systems: UHDAS, VmDAS
- What can go wrong

Part II: UHDAS

Part II: UHDAS

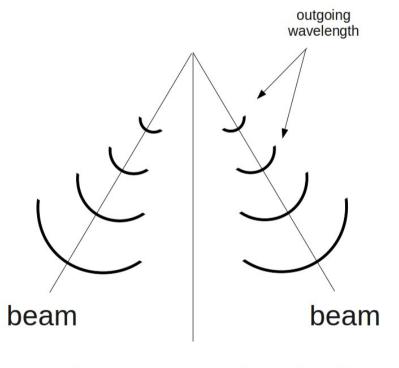
- ADCP Processing with CODAS
- UHDAS: What it does
- Monitoring
 - At sea
 - On Land
- What can be changed, tested

Part I: ADCP

- Getting Ocean Velocity
- ADCP Acquisition Systems: UHDAS, VmDAS
- What can go wrong

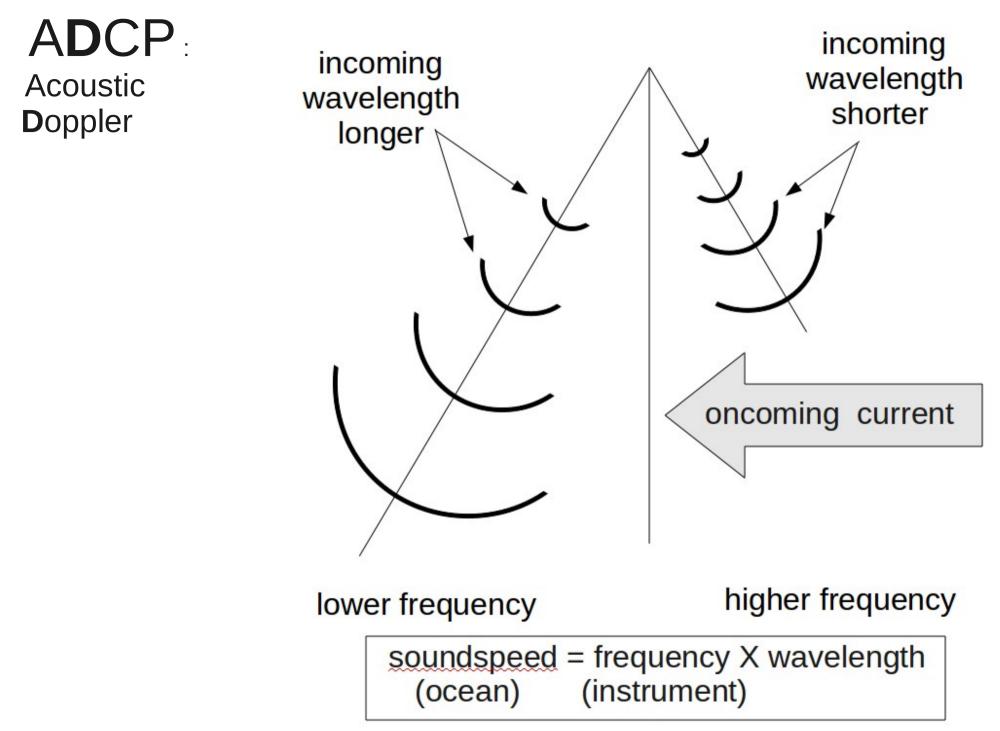
(I) ADCP: Getting Ocean Velocity

ADCP :


Acoustic (it pings along beams at a frequency)

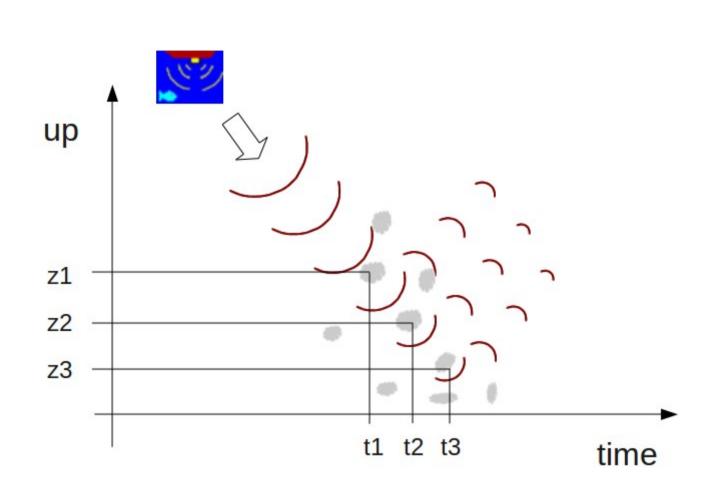
- Doppler (uses frequency shift to get velocity along the beam)
- **C**urrent (include many more steps to get ocean velocity)

Profiler (listen for the return in small chunks of time to create a vertical profile)

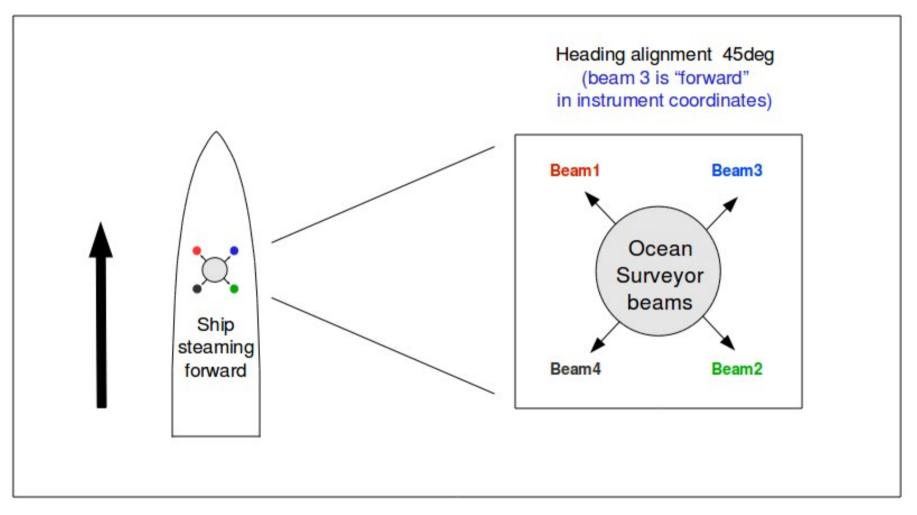

(I) ADCP: Getting Ocean Velocity

ADCP : Acoustic

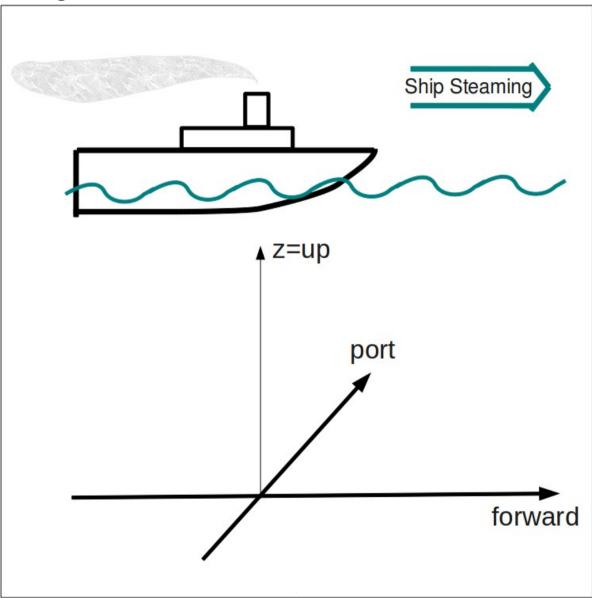
soundspeed = frequency X wavelength
(ocean) (instrument)


5: ADCP-- Acoustic

6: ADCP-- Doppler

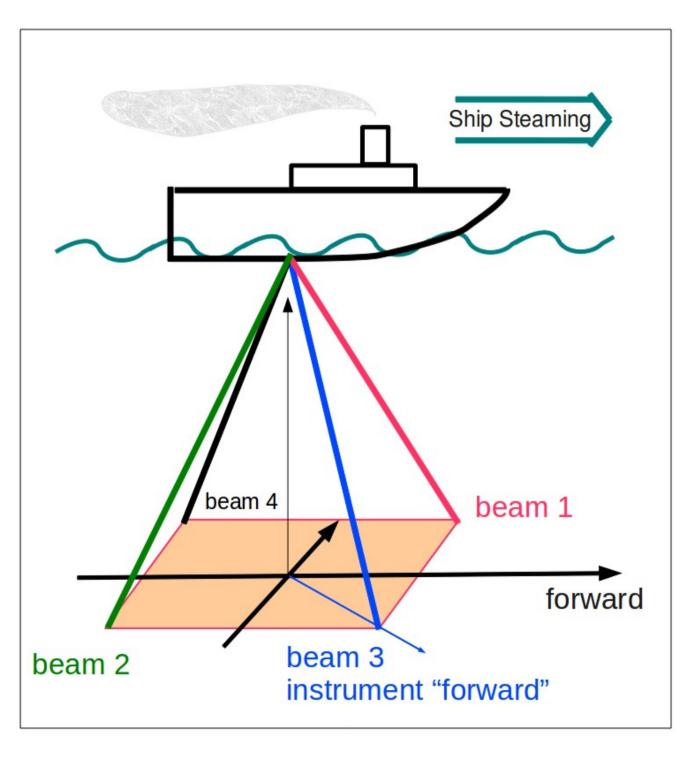

ADCP:

Acoustic Doppler Current **P**rofiler

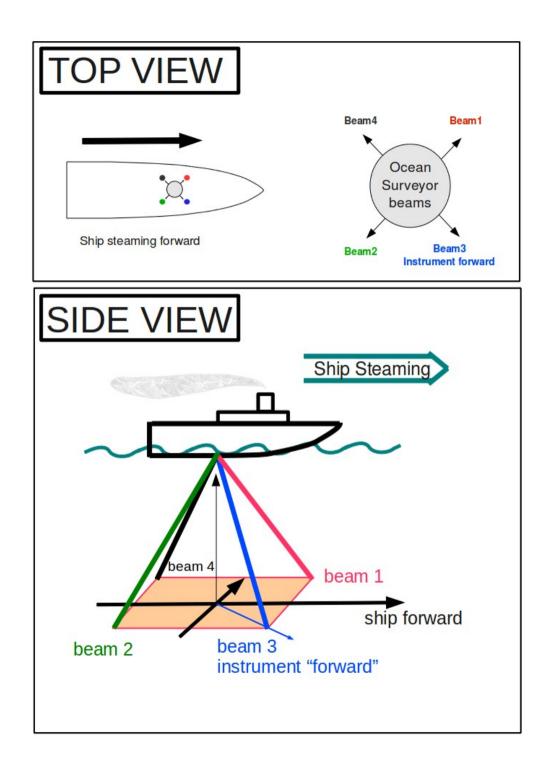


"Gating" the return over time results in "bins" in the vertical, creating a profile of information

Plan View


8: ADCP-- Current (1)

9: ADCP-- Current (2)

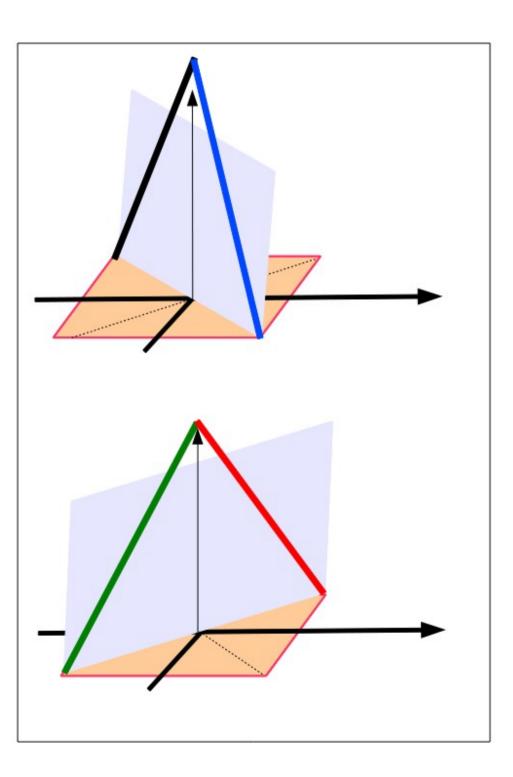

Four beams

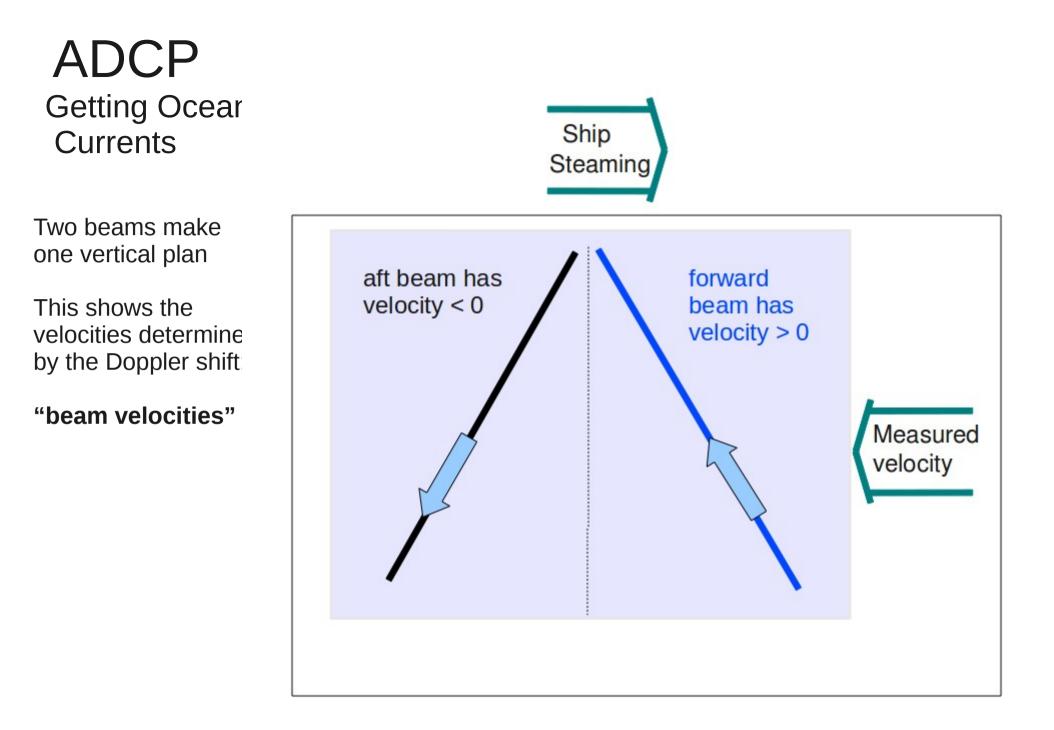
- 90deg apart
- 30 (or 20)deg up from vertical
- "forward beam" is #3
- usually 45deg starboard of forward

Four beams

- 90deg apart
- 30 (or 20)deg up from vertical
- "forward beam" is #3
- usually 45deg starboard of forward

Two opposite beams make a vertical plane

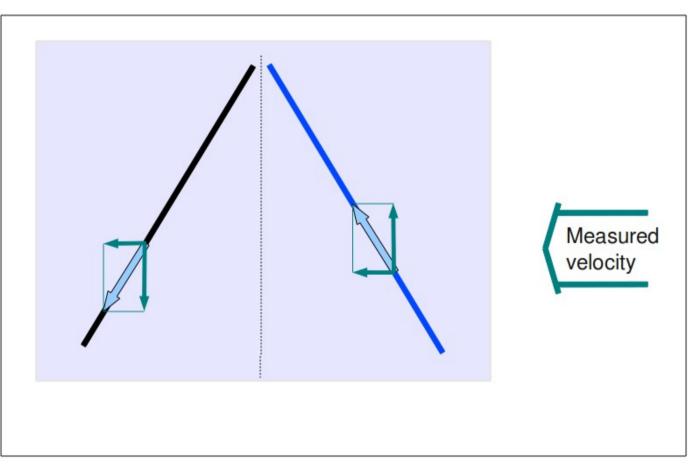



Now we have two vertical plates at 90deg to each other

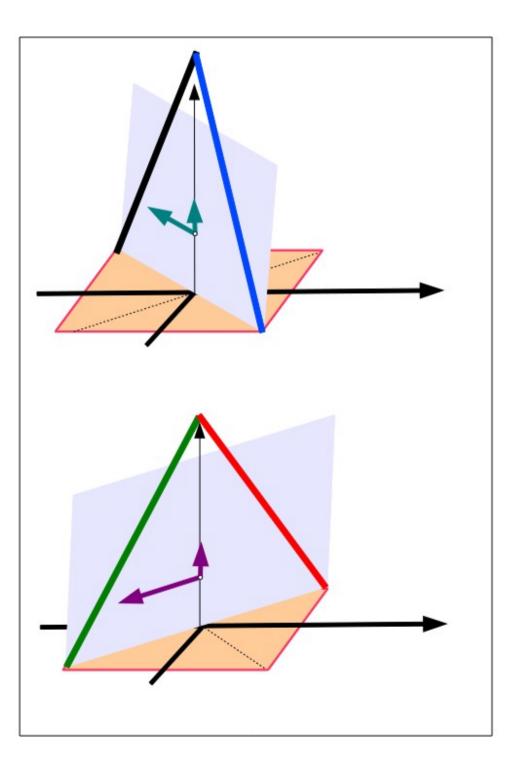
These are the basis of the horizontal and vertical velociti

Horizontal velocities will be us To get ocean velocities

Vertical velocities will be used error-checking

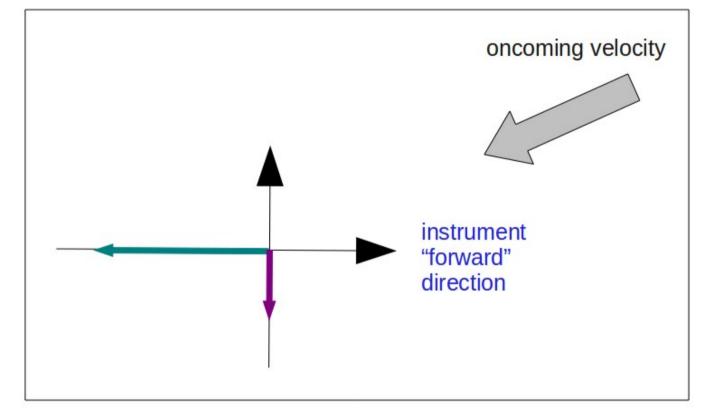


14: ADCP-- Current (7)



Interpret the two beam velocities one horizontal and one vertical velocity

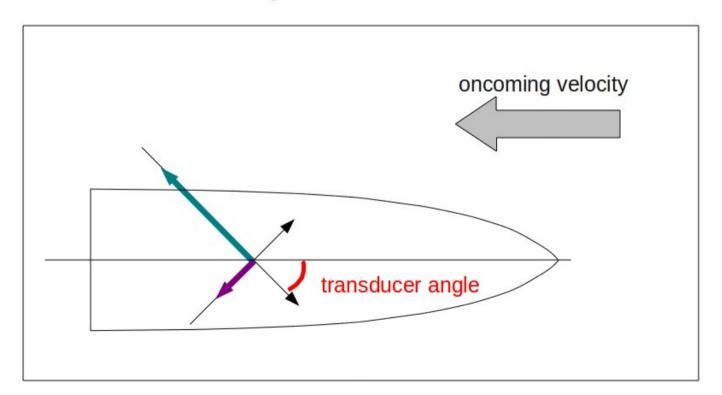
Now we see the horizontal and vertical velocities on the two planes


Use the horizontal velocities for determining ocean velocities requires more steps.

Instrument coordinates

This is a top-down view of the measur horizontal velocity ir **instrument coordinates** (from the two plane: made by the beams

(determining ocean velocities requires more steps)

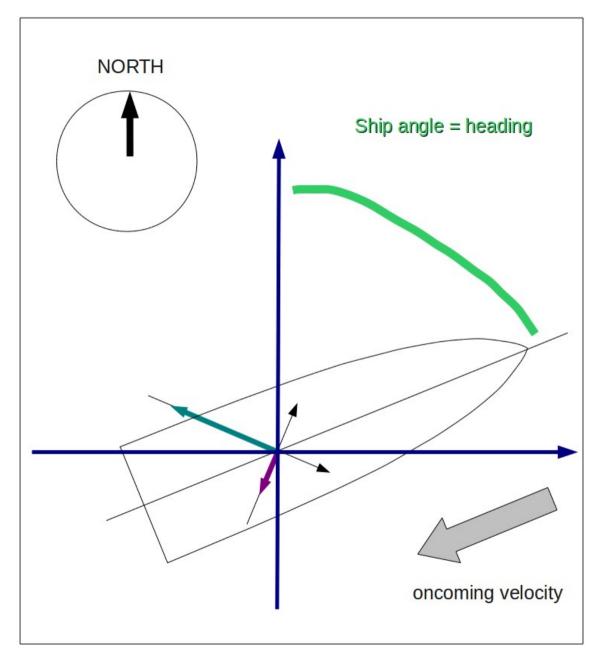


This is a top-down view of the measure horizontal velocity in ship coordinates.

The instrument coordinates values are rotated by the **transducer angle**.

(determining ocean velocities requires more steps)

Ship coordinates

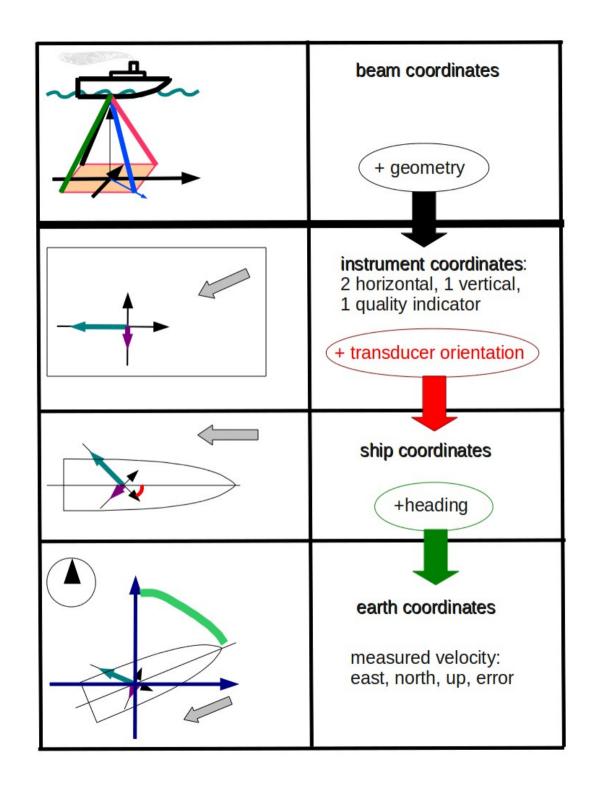


This is a top-down view of the measured horizontal velocity in earth coordinates.

The instrument coordinates values are rotated by the **ship's heading**.

(determining ocean velocities requires more steps)

Earth coordinates

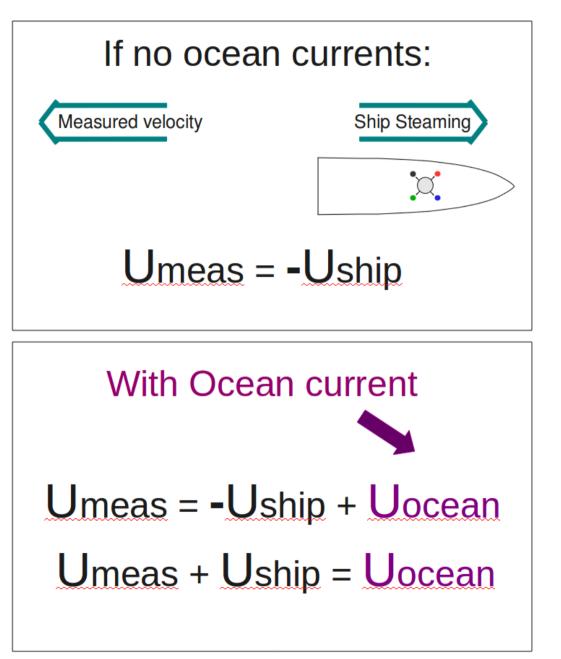


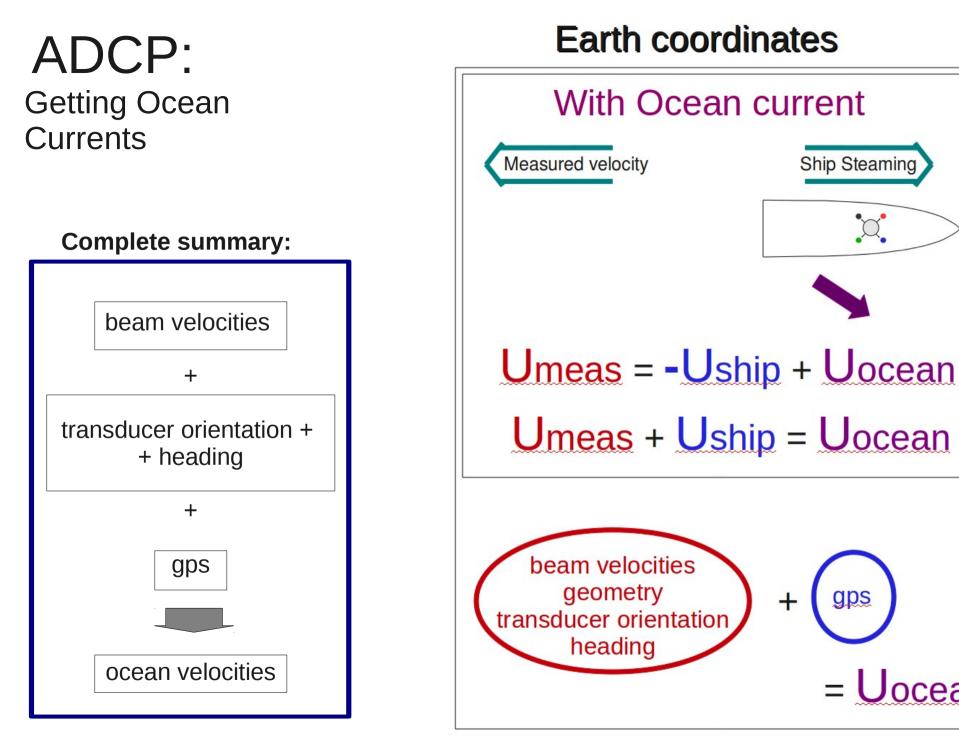
Summary of steps:

Doppler to beam (not shown)

below here: horizontal+vertical

- beam to instrument
- instrument to ship
- ship to earth



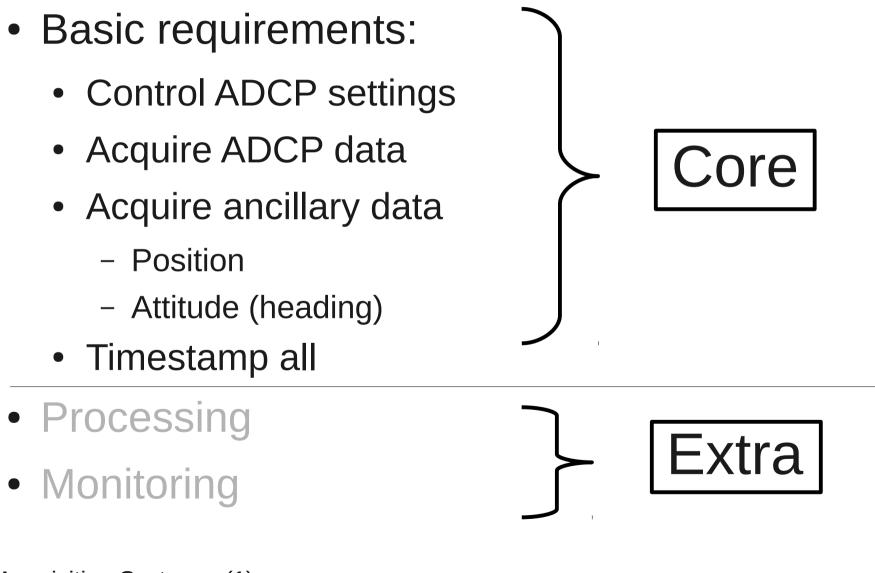

20: ADCP-- Current (13)

Earth coordinates + **GPS** gives ship speed

add ship speed to measured velocity to get ocean velocity

Earth coordinates

Q


gps

= Uocean

22: ADCP-- Current (15)

Part I: ADCP

- Getting Ocean Velocity
- ADCP Acquisition Systems: UHDAS, VmDAS
- What can go wrong

24: Acquisition Systems (1)

- Basic requirements
- Processing
 - Coordinate transformation
 - Editing
 - Averaging
 - Graphical Displays
- Monitoring

- Basic requirements
- Processing
- Monitoring
 - Computer system
 - Data acquisition
 - Processing
 - Access to data

26: Acquisition Systems (3)

- Basic requirements
 - Overview
 - Serial setup
 - Data logging
- Processing
- Monitoring

27: Acquisition Systems – Basic Requirements (1)

ADCP Acquisition Systems- Overview

	UHDAS	VmDAS
developer style	Univ Hawaii linux system	TRDI windows application
source	open source	executable
purpose	seagoing	all-purpose
	oceanographers	
goals	maximize usefulness at sea	off-the-shelf
	long-term value for research	
evolution	continuous	incremental
setup	complex	confusing

28: Acquisition Systems – Basic requirements (2)

Acquisition: Serial Setup

	UHDAS	VmDAS
ADCPs	multiple	one (per instance)
feeds	any number	3 (older version=2)
messages	many types can add more	fewer types
	subsample feed	record all
	choose messages	record all
gui controls operation	instrument settings simple	simple/confusing
protected	serial Processing	nothing protected

29: Acquisition Systems – Basic requirements (3)

Acquisition: Data Logging

	UHDAS	VmDAS
data logging	separate processes	one big program
time tagging	buffered	unbuffered
	tag every line	tag ensemble
data formats	multiple	TRDI ADCP
data directory	heirarchical	flat
time range	match per file	match for one
		logging period
filenames sort	always	one logging period
(time=ascii)		
metadata	stored with data	ascii files elsewhere

30: Acquisition Systems – Basic requirements (4)

- Basic requirements
 - Overview
 - Serial setup
 - Data logging
- Processing
 - Processing components
 - Accessing data products
- Monitoring

Processing

	UHDAS	VmDAS
editing	CODAS	minimal
heading	reliable	primary
secondary	corrected to	replaced by
heading	accurate	fallback
pings	interleaved	first
configure plots??	no	yes
plots	oceanographic: - profiles (E,N) - vector (+topo) - contour - bridge (mariner)	profile (speed, dir) vector WinADCP?

32: Acquisition Systems – Processing (2)

Accessing Data Products

	UHDAS	VmDAS
access plots	ship's web console	console only
data formats	TRDI Matlab	TRDI
access data	netCDF ship's web windows share NFS	acquisition PC windows share
documentation	ship's web www	acquisition PC www
speedlog out	NB150 only	yes

33: Acquisition Systems – Accessing Data

- Basic requirements
 - Overview
 - Serial setup
 - Data logging
- Processing
 - Processing components
 - Accessing data products
- Monitoring

34: Acquisition Systems – Monitoring (1)

Monitoring

monitor	UHDAS	VmDAS
computer	daily report	?
serial	daily_report	LOG and console messages configure tables
ADCP	beam plots	configure plots
Processing	daily_report plots	configure plots
	calibration	no
	ping rate	?
	bottom track	no
remotely	email to anyone	no

35: Acquisition Systems – Monitoring (2)

Part I: ADCP

- Getting Ocean Velocity
- ADCP Acquisition Systems: UHDAS, VmDAS
- What can go wrong
 - Perspective: systems
 - Perspective: data flow
 - Perspective: symptoms in ocean current
 - Perspective: VmDAS

ADCP: what can go wrong

Viewed from the perspective of:

- ADCP systems (components)
 - Computer
 - ADCP
 - Ancillary: GPS, Heading
- Data flow (where does the problem occur)
- Manifestation in ocean velocities examples
 - Cross-track error (transducer angle)
 - Along-track error (scale factor)
 - Data loss (4 recent examples)

37: Things go wrong

ADCP: what can go wrong

Viewed from the perspective of:

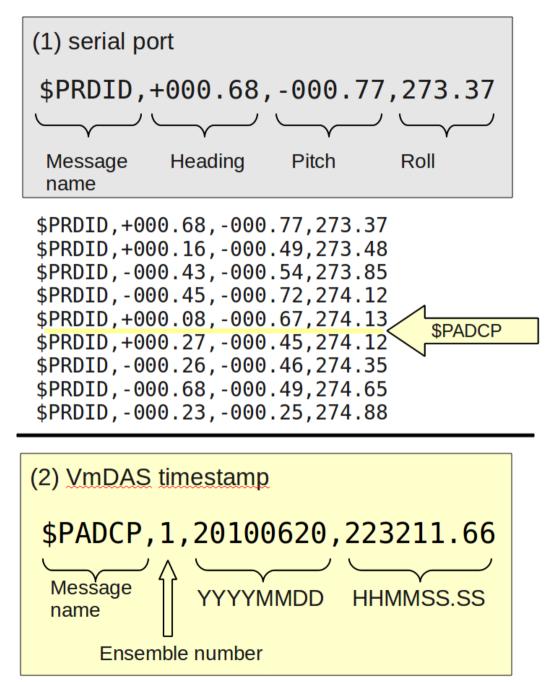
- ADCP systems (components)
 - Computer
 - ADCP
 - Ancillary: GPS, Heading
- Data flow (where does the problem occur)
- Manifestation in data product examples
 - Cross-track error (transducer angle)
 - Along-track error (scale factor)
 - Data loss (4 recent examples)

38: Things go wrong

What can go wrong: ADCP System (Computer)

- PC clock is erratic
- PC clock is set to local time
- Poor quality serial feed
 - Too many messages
 - Low baud rate
 - Multiple unbuffered devices

Partial loss, Garbled messages


39: Things go wrong: computer

Bad Serial Feeds

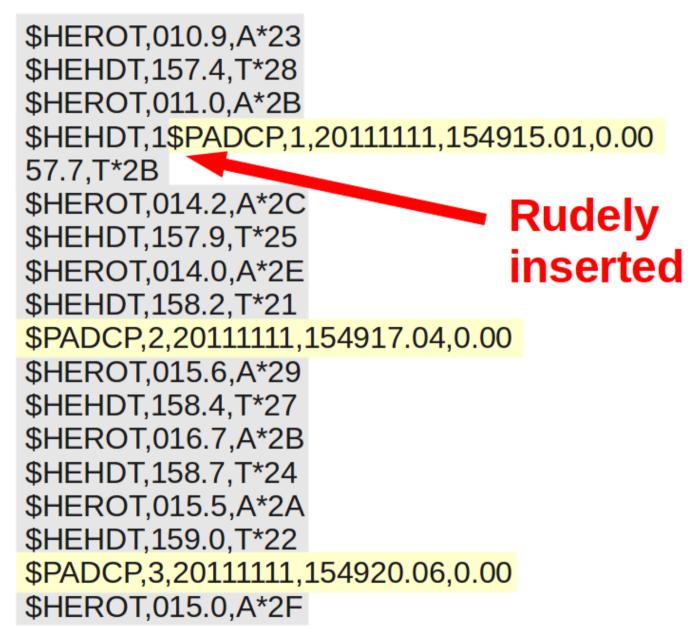
VmDAS is vulnerable to bad serial feeds

Demonstration follows...

VmDAS: Timestamping a serial feed

VmDAS serial feed: when it works

\$PRDID,+000.16,-000.49,273.48 \$PRDID, -000.43, -000.54, 273.85 \$PADCP, 1, 20100620, 223211.66 \$PRDID, -000.45, -000.72, 274.12 \$PRDID,+000.08,-000.67,274.13 \$PRDID,+000.27,-000.45,274.12 \$PRDID, -000.26, -000.46, 274.35 \$PRDID, -000.68, -000.49, 274.65 \$PRDID, -000, 23, -000, 25, 274, 88 \$PADCP.2.20100620.223218.16 \$PRDID,+000.56,+000.05,275.00 \$PRDID,+000.84,-000.15,275.05 \$PRDID,+000.48,-001.15,275.15 \$PRDID,+000.07,-002.38,275.28 \$PRDID, -000.01, -002.76, 275.33 \$PRDID.-000.02.-001.75.275.43 \$PADCP.3.20100620.223223.64 \$PRDID, -000.26, +000.05, 275.72 \$PRDID, -000.51, +001.37, 276.10 \$PRDID, -000.35, +001.45, 276.35 \$PRDID,+000.26,+000.24,276.31 \$PRDID,+000.81,-001.25,276.07 \$PADCP, 4, 20100620, 223229.13 \$PRDID,+000.70,-002.05,275.85 \$PRDID,+000.09,-002.04,275.74


UHDAS serial timestamping

\$UNIXD,87.6667280,12.9128355 \$AGHDT,092.0,T \$UNIXD,87.6667395,12.9128470 \$AGHDT,092.0,T \$UNIXD,87.6667511,12.9128586 \$AGHDT,092.4,T \$UNIXD,87.6667627,12.9128701 \$AGHDT,092.4,T \$UNIXD,87.6667743,12.9128817 \$AGHDT,092.0,T \$UNIXD,87.6667858,12.9128933 \$AGHDT,091.7,T \$UNIXD,87.6667974,12.9129049 \$AGHDT,091.7,T \$UNIXD,87.6668090,12.9129164 \$AGHDT,092.0,T \$UNIXD,87.6668206,12.9129280 \$AGHDT,092.2,T \$UNIXD,87.6668321,12.9129396 \$AGHDT,092.4,T \$UNIXD,87.6668437,12.9129512

VmDAS serial feed: a common problem

\$HEROT,010.9,A*23 \$HEHDT, 157.4, T*28 \$HEROT,011.0,A*2B \$HEHDT,1\$PADCP,1,20111111,154915.01,0.00 57.7.T*2B \$HEROT,014.2,A*2C \$HEHDT, 157.9, T*25 \$HEROT,014.0,A*2E \$HEHDT,158.2,T*21 \$PADCP,2,20111111,154917.04,0.00 \$HEROT,015.6,A*29 \$HEHDT,158.4,T*27 \$HEROT,016.7,A*2B \$HEHDT,158.7,T*24 \$HEROT,015.5,A*2A \$HEHDT,159.0,T*22 \$PADCP,3,20111111,154920.06,0.00 \$HEROT,015.0,A*2F

VmDAS serial feed: a common problem

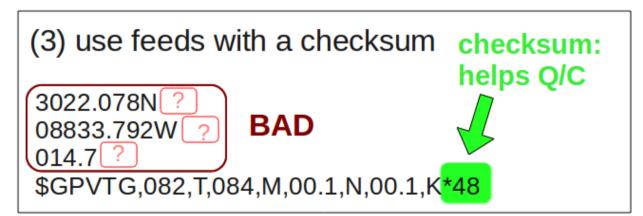
Compromised serial data

- multiple feeds
- messages with no checksum
- low baud rate
- coming from a computer (SCS)

```
$GTG,A,054,35,27209.679,N7.5500.C
8,01HDT,354.5,-2.4,M8685.4,8507.0,03,W*6D
$GPM,0,356,13358,M
$H.4,N,3543,K*
$
$GPG,3505453572727..5,5,N,.6,00.45
$GW,2,,0501.0,272$PADCP,4910,20110507,054659.19,70.00
5,M,94,.4,M,00.0,01,W,65
,01HDT,354.3,-2
$GPM,0,355,13358,M
$H.3,N,3542,K*
$
$GPG,3505453582727..4,1,N,.5,00.45
$GW,2,,0501.0,2726,M,20,.4,M,00.0,01,W,64
,01HDT,354,M,T
$GPVTG,354,T,356,M,09.3,N,17.2,KT
```

Partial \$GPGGA position messages

Partial \$HEHDT heading messages


SUMMARY: For the best VmDAS Serial data....

(1) DO NOT

push multiple sources into one port use long RS232 cables send too extra many messages use a high repetition rate (eg 10Hz)

(2) DO

get data directly from the instrument (not a computer) choose a higher baud rate

What can go wrong – ADCP

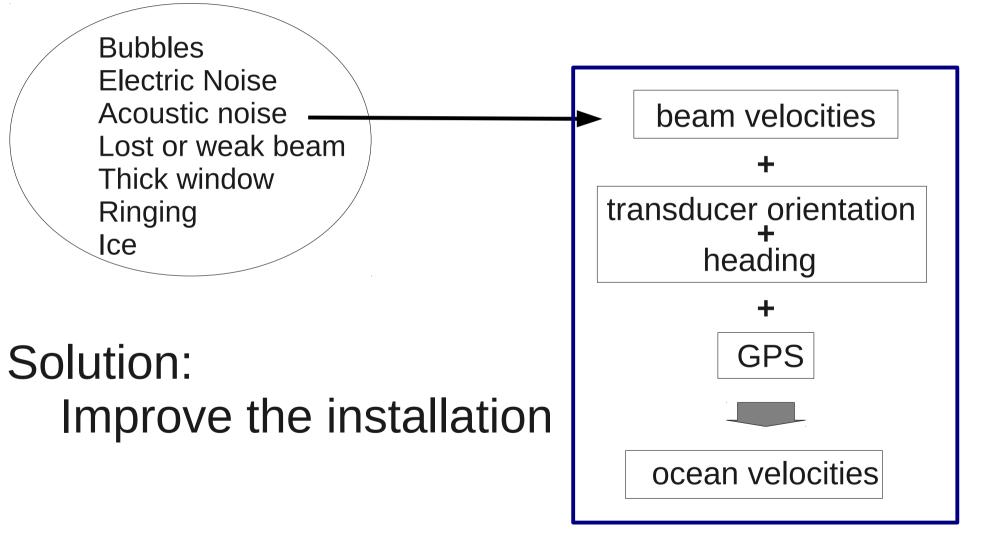
- ADCP loss or degradation
 - Loss of range (loud while underway, weak beam)
 - Loss of one beam (not good)
 - Loss of multiple beams (repair/replace)
 - Acoustic interference (another pinger)
 - Ice
 - Bubbles
 - Acoustic noise (results in loss of range)
 - Electrical noise

48: Things go wrong - ADCP

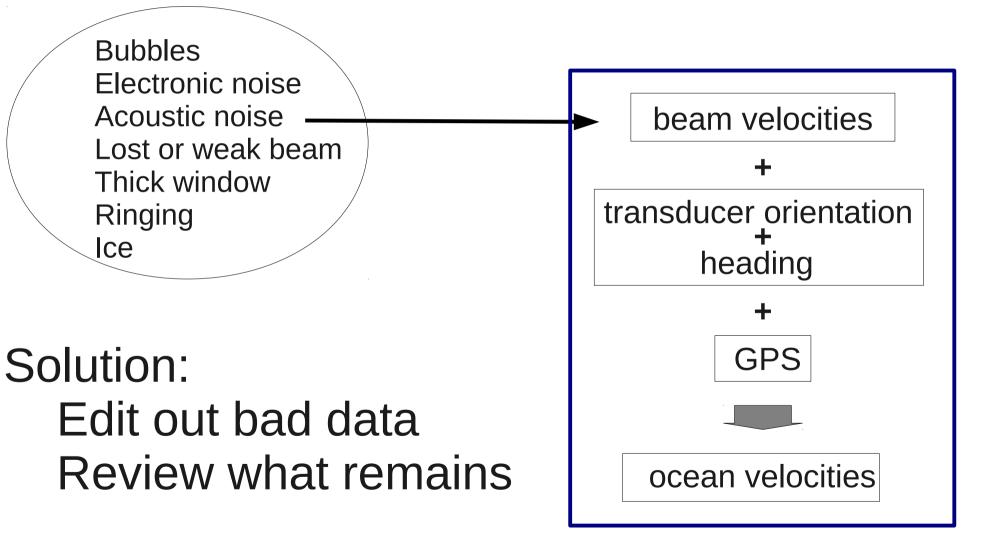
What can go wrong – ancillary

- Heading
 - Heading device fails
 - Inaccurate heading device (old mechanical gyro)
- Position
 - Position device fails; gappy
- Any: serial feed problems
 - Cable falls out
 - Instrument fails

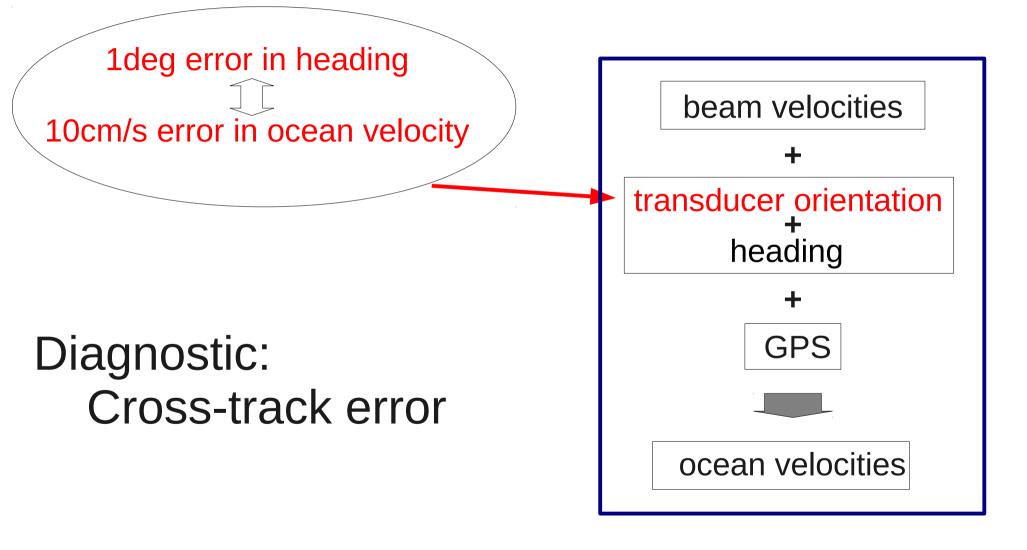
49: Things go wrong - ancillary


ADCP: what can go wrong

Viewed from the perspective of:


- ADCP systems (components)
 - Computer
 - ADCP
 - Ancillary: GPS, Heading
- Data flow (where does the problem occur)
- Manifestation in ocean velocities examples
 - Cross-track error (transducer angle)
 - Along-track error (scale factor)
 - Data loss (4 recent examples)

50: Things go wrong

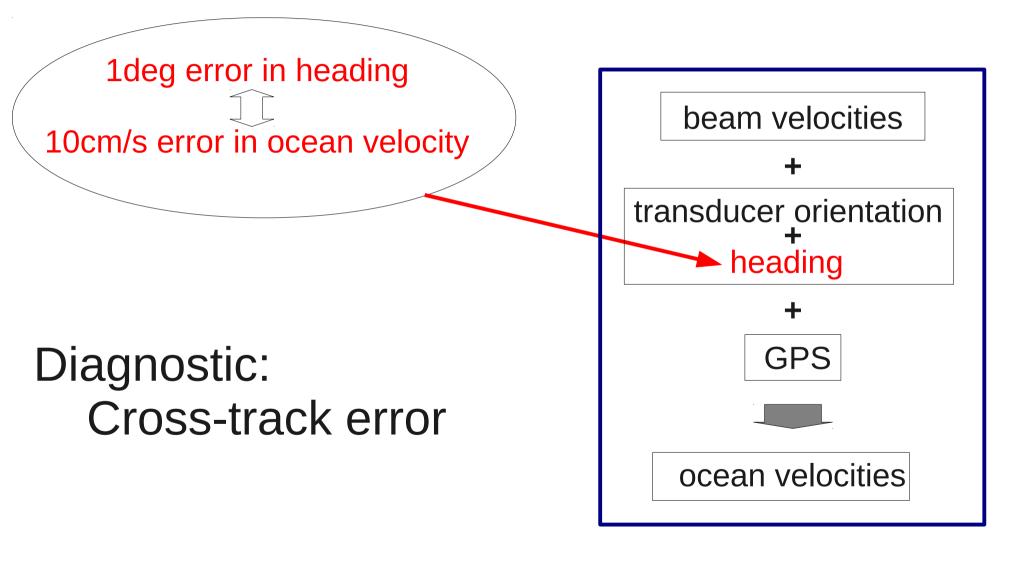

ADCP: data loss, degradation (1) degraded range and coverage

ADCP: data loss, degradation (2) remaining data compromised

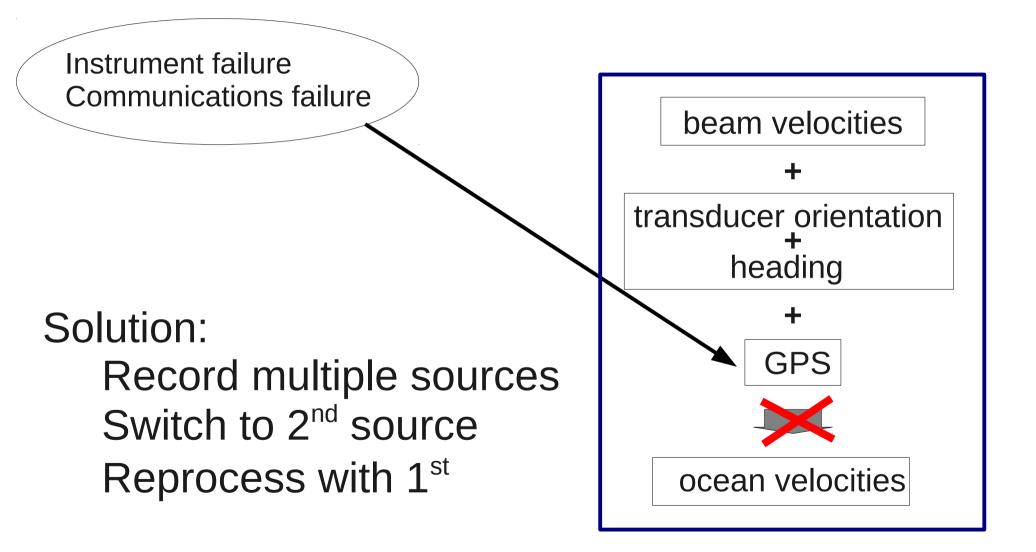
Transducer misalignment (1) angle off by <10deg

Transducer misalignment (2) angle off by >90deg (*)

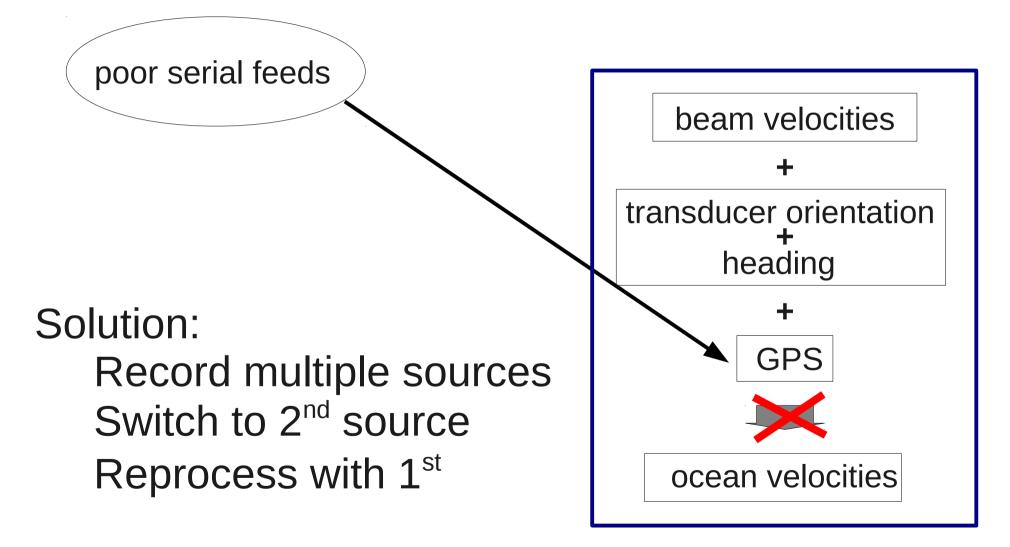
Ocean Surveyor acquires data using **EA** in the calculation of BEAM VELOCITIES. Gross error could irrevocably ruin the data


Diagnostic: beam velocities corrupted (wrap)

beam velocities transducer orientation heading **GPS** ocean velocities


54: Things go wrong (system)

(*) actual value varies with ship


Headings are inaccurate

Failure of ancillary (heading, gps)

Intermittent loss or corruption of ancillary data

ADCP: what can go wrong

Viewed from the perspective of:

- ADCP systems (components)
 - Computer
 - ADCP
 - Ancillary: GPS, Heading
- Data flow (where does the problem occur)
- Manifestation in ocean velocities examples
 - Cross-track error (transducer angle)
 - Along-track error (scale factor)
 - Data loss (4 recent examples)

58: Things go wrong

What can go wrong: "manifestation in ocean velocities"

(1) Cross-track error:

- recovery requires accurate heading

(2) Along-track error:

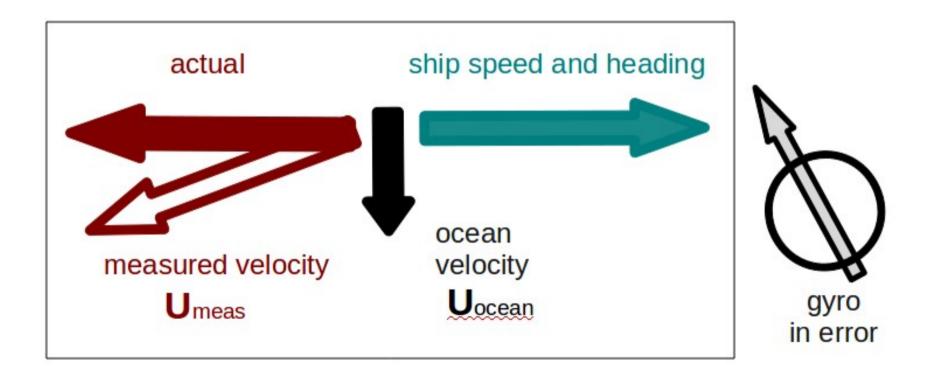
- may indicate a serious problem
- recovery may be possible, incomplete, ambiguous

(3) Other:

- Acoustic interference
- Underway bias (bad weather)
- Bad Setup (4 examples)

What can go wrong: "manifestation in ocean velocities"

(1) Cross-track error:


- recovery requires accurate heading

- (2) Along-track error:
 - may indicate a serious problem
 - recovery may be possible, incomplete, ambiguous

(3) Other:

- Acoustic interference
- Underway bias (bad weather)
- Bad Settings (3 examples)

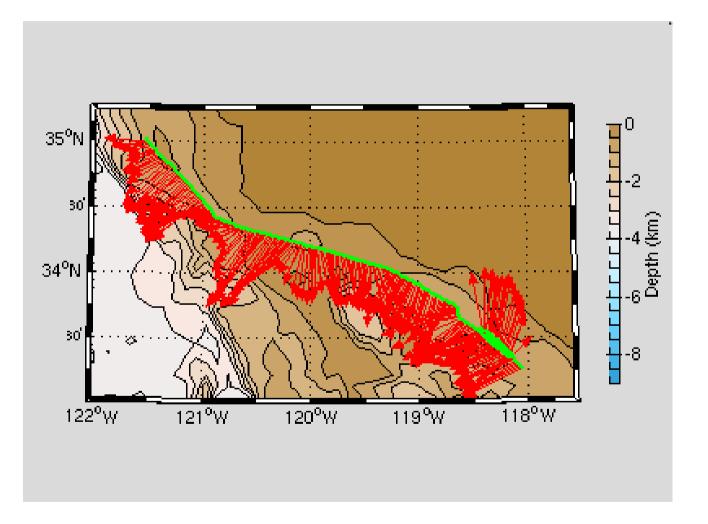
Cross-track bias in ocean velocity from angle error: (heading + transducer angle)

61: Things go wrong (angle, cartoon)

Angle applied comes from

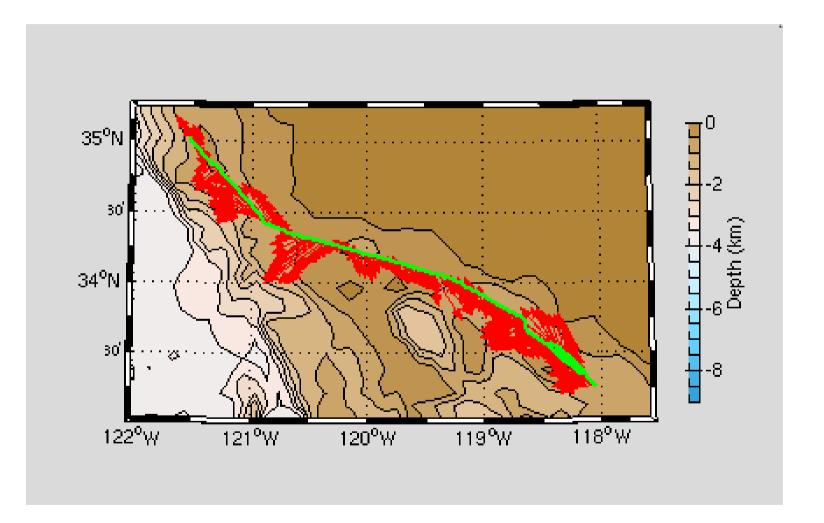
- Transducer angle (beam "3" clockwise from bow)
- Heading of ship
- If UHDAS,
 - Reliable heading for each ping (eg gyro)
 - Heading correction for each averaging period
 - Calculated relative to devices such as Ashtech, POSMV, Seapath, Mahrs, Phins

62: Things go wrong (angle, source)

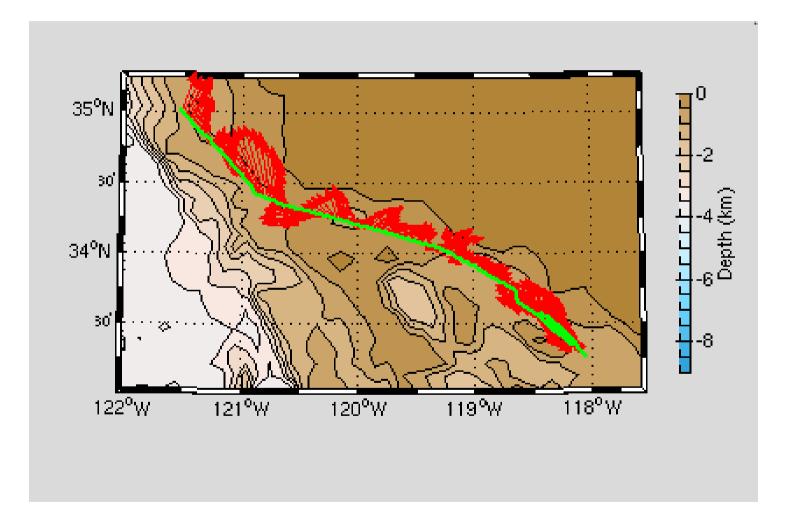

Angle applied comes from

• Transducer angle (beam "3" clockwise from bow)

This is a constant value for the whole cruise Examples of error in transducer angle follow...


63: Things go wrong (angle, constant)

Calibration: angle error -3.6deg


64: Things go wrong (angle, constant error)

Calibration: angle error -1.6

65: Things go wrong (angle, constant error)

Calibration: angle error 0.4

66: Things go wrong (angle, constant error)

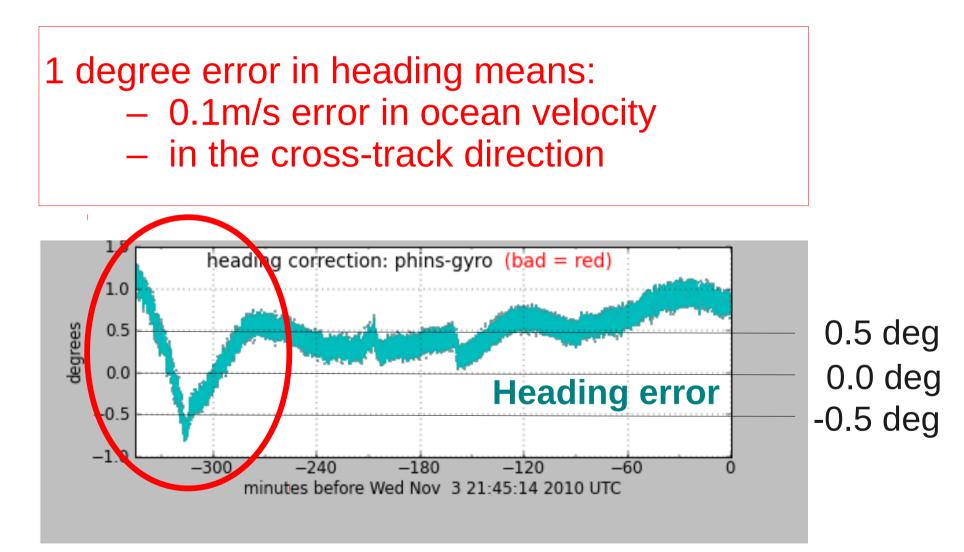
Angle applied comes from

Heading, which may be in error by

- A constant offset
- A time-dependent offset

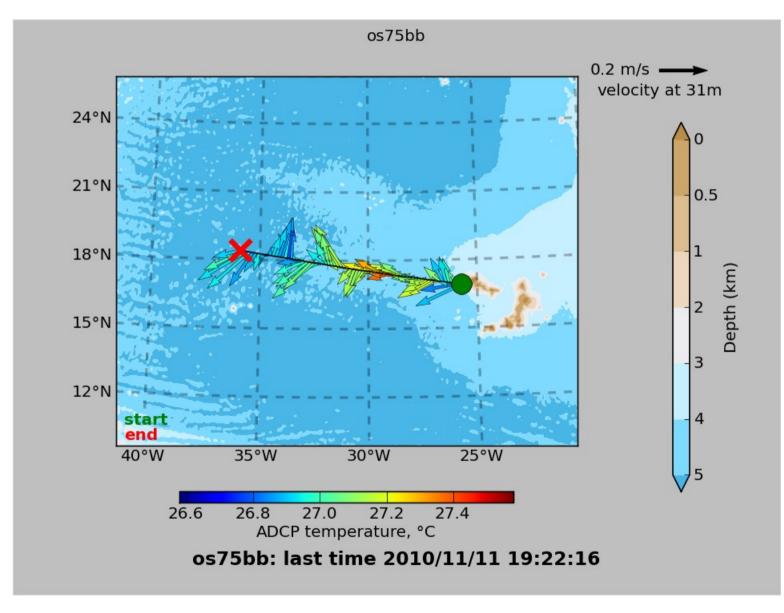
Example follows ...

67: Things go wrong (angle, variable)


Phins-Gyro difference varies with time

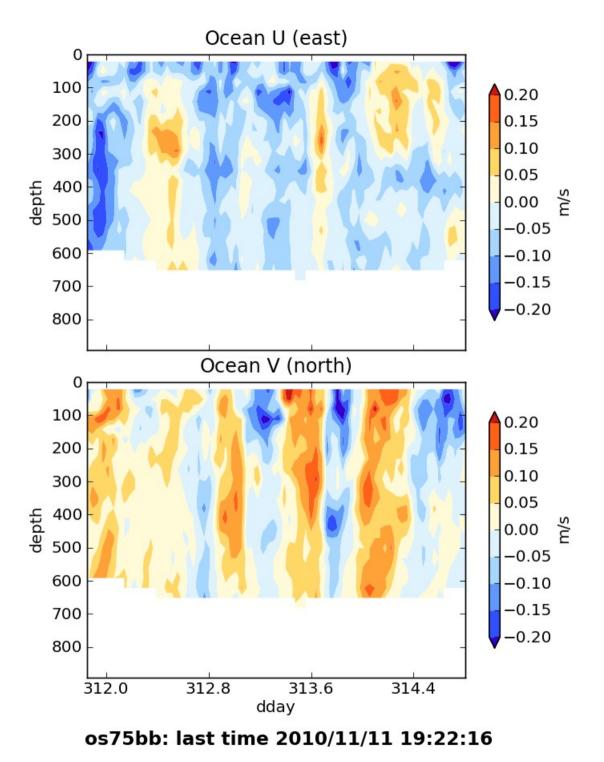
Changes in ship's heading affect heading error

68: Things go wrong (angle, variable)


Effect of Time-Dependent Heading Error on Ocean Velocties

Changes in ship's heading affect heading error

69: Things go wrong (angle, variable)


Is this a heading error?

70: Things go wrong (angle, variable, trick question)

Contour plot:

Is this cross-track signal (stripes in N/S ocean velocity) due to a heading error?

71: Things go wrong (angle, variable, trick question)

Answer

Actually, it's really the ocean, but we can't tell without knowing the quality of the accurate heading device.

72: Things go wrong (angle, variable, trick answer)

What can go wrong: "manifestation in ocean velocities"

(1) Cross-track error:

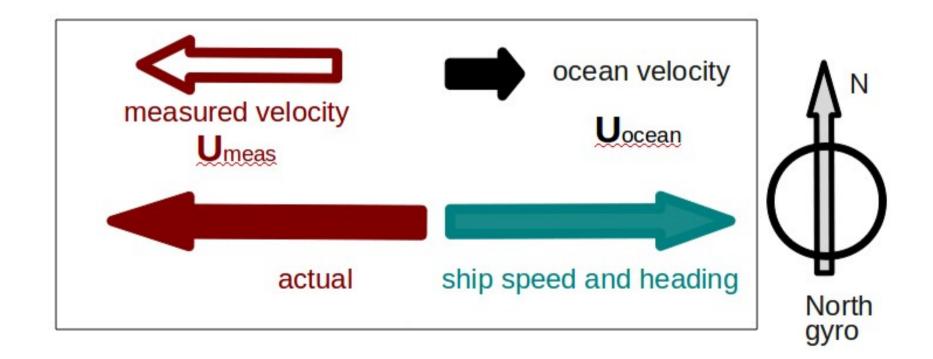
- recovery requires accurate heading

(2) Along-track error:

- may indicate a serious problem
- recovery may be possible, incomplete, ambiguous

(3) Other:

- Acoustic interference
- Underway bias (bad weather)
- Bad Settings (3 examples)

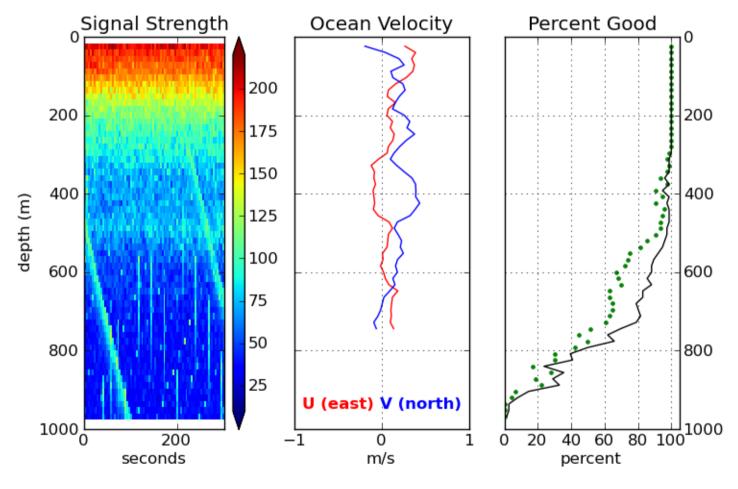

73: Things go wrong (along-track)

Examples of along-track error

- Acoustic interference
- Underway bias (bad weather)
- Scale factor (NB150 soundspeed correction)
- (things that look like scale factor)

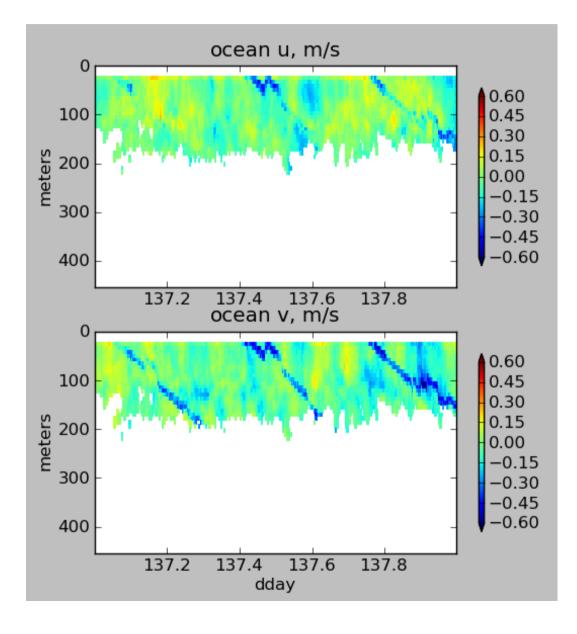
Along-track Error

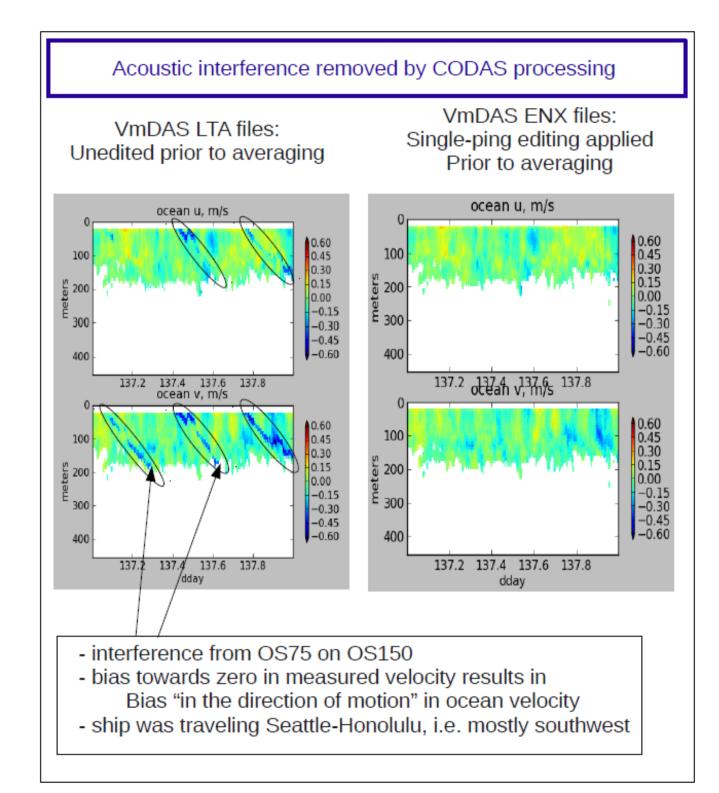
Bias towards zero in measured velocity Alongtrack bias in ocean velocity



75: Things go wrong (scale factor, cartoon)

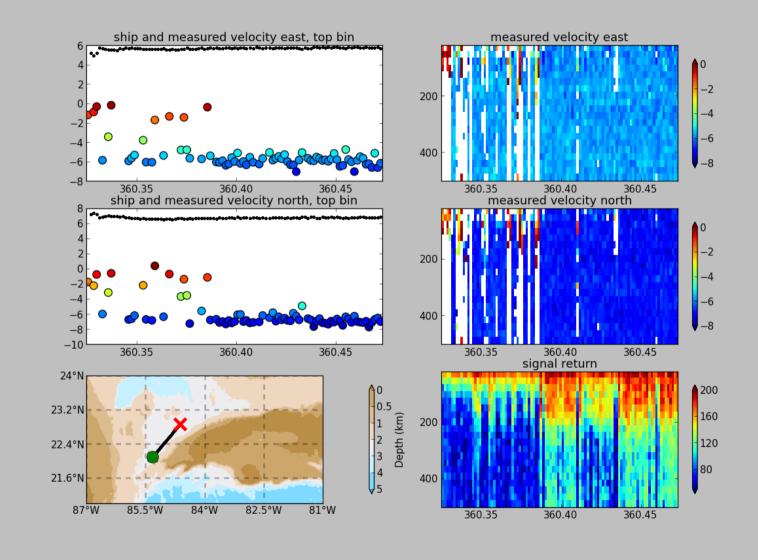
Examples of along-track error

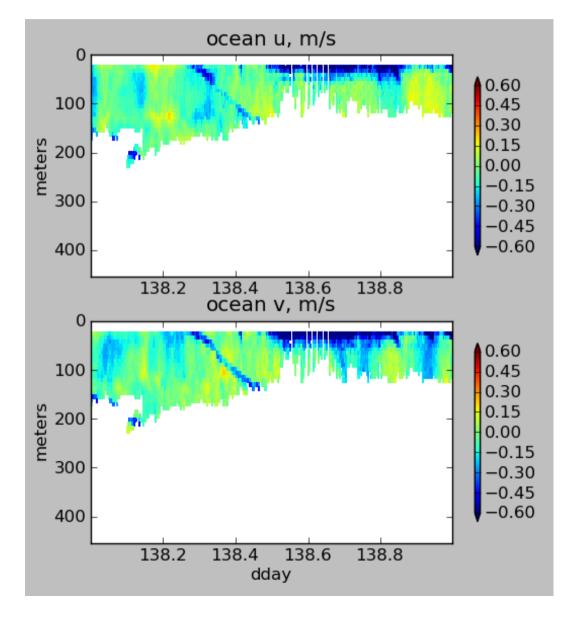

- Acoustic interference
- Underway bias (bad weather)
- Scale factor (NB150 soundspeed correction)
- (things that look like scale factor)

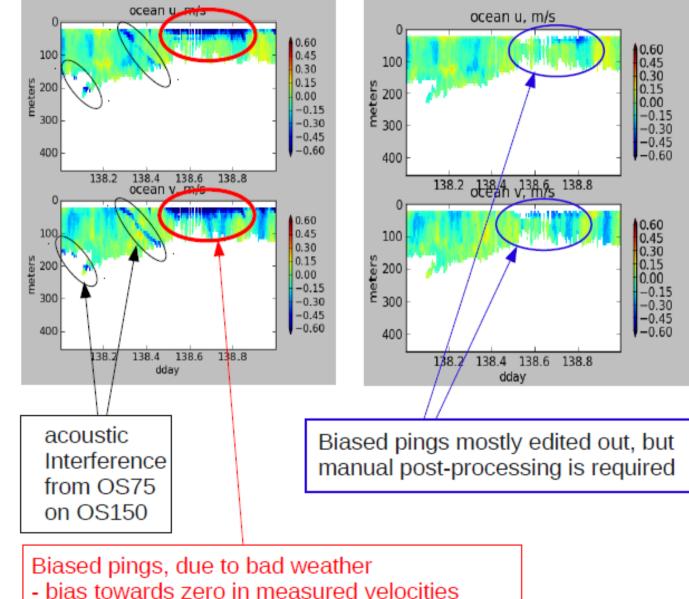

Acoustic Interference: single ping

os75nb heading correction: -3.52 deg, 2010/08/11 17:17:51 UTC

Acoustic Inference: averaged

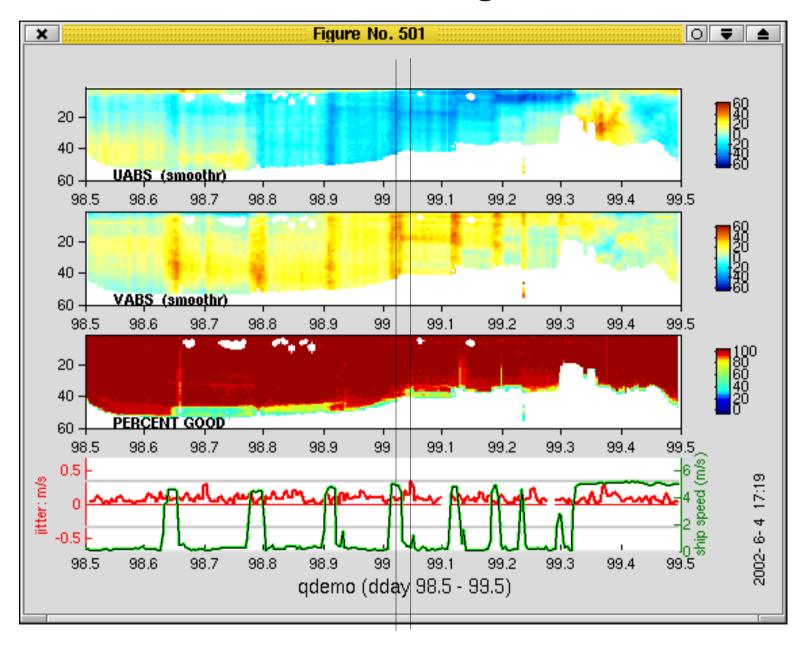



Examples of along-track error


- Acoustic interference
- Underway bias (bad weather)
- Scale factor (NB150 soundspeed correction)
- (things that look like scale factor)

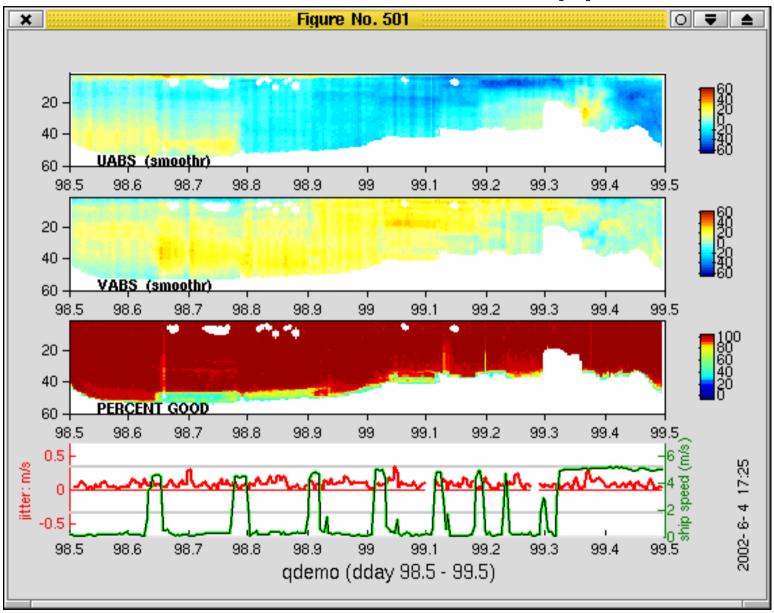
single-ping editing:underway bias

Averaged (unedited) data: Acoustic interference and underway bias (bubbles)


OS150 underway bias due to poor weather conditions

- bias in direction of motion in ocean velocities
- shorter profiles (degraded quality)

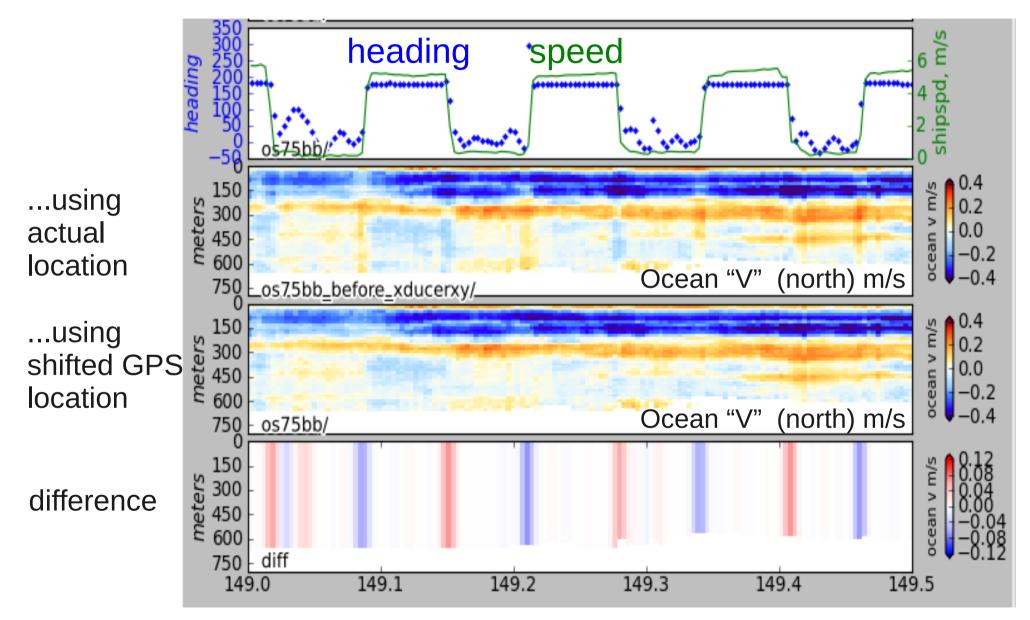
Examples of along-track error


- Acoustic interference
- Underway bias (bad weather)
- Scale factor (NB150 soundspeed correction)
- (things that look like scale factor)

scale factor: alongtrack bias

85: Things go wrong (scale factor, before)

After scale factor applied



86: Things go wrong (scale factor, after)

Problems that "look like" alongtrack bias

- Time lag between ADCP and heading
- Time lag between ADCP and GPS
- Transducer very different fore/aft from GPS (example)

Transducer not aligned with GPS

8: alongtrack bias

Things go wrong: VmDAS examples

- Problem Exists
- Solution, for previous data
 - Rely on reprocessing
 - Might require new software
 - Might be able to fix...
 - Might NOT be able to fix
- Solution, for future cruises
 - (fix it)

Things go wrong: VmDAS examples

- (1) Bad Processing settings:
 - Sette: acquiring heading, not using it
- (2) Serial Snafu
 - Gordon Gunter: intermittently awful serial data
- (3) Bad setup
 - (a) Walton Smith: POSMV
 - the ONLY heading source
 - Poor quality
 - (b) MacArthur2: not acquiring heading at all
- (4) Bad luck
 - several: 3 beams

90: Vmdas examples

Things go wrong: VmDAS example (1)

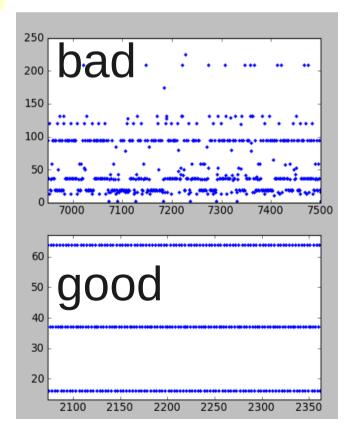
- Problem: <u>Bad Processing settings</u>:
 - Sette: acquiring heading, but not using it

Acquiring headings, but not using... N2R file \$HEHDT, 318.3, T* 🎬 🔛 🛄 🎬 **↑**¶ 373 \$HEHDT, 318.5, T* \$HEHDT, 318.4, T* 2-2+2 🔽 Keep on screen <u>s</u>t \$HEHDT,318.0,T* Bin 1 dist 23.98 m 1498 bytes 00:01.50 Time/ping \$PADCP, 6, 201107 \$HEHDT, 317.8, T* 60 Blank dist 8.00 m Pings/ens 242 **CFG** \$HEHDT, 317.8, T* Bin length 16.00 m Earth Time/ens 00:00.00 \$HEHDT, 317.9, T* \$PADCP,7,201107 87.48 ± 1.0 Internal sensor only dea \$HEHDT, 317.8, T* Xdcr Depth 5.00 m Temp 26.12 C 0.00 ± 0.00 deg. LDR \$HEHDT, 317.7, T* Salinity 35 ppt Sound Vel 1527 m/s 0.00 ± 0.00 deg \$HEHDT, 317.7, T* \$PADCP,8,201107 2:13:26 A.M. End Time 2:23:26 A.M. Keading \$HEHDT, 317.6, T* 21 11 29 N 21 12 25 N End Lat NAV \$HEHDT, 317.4, T* Pitch |----**\$HEHDT, 317.3, T*** 157 52 06 W End Lon 157 50 42 W Roll 92: Vmdas examples

Things go wrong: VmDAS example (1)

- Problem: <u>Bad Processing Settings</u>:
 - Sette: acquiring heading, but not using it
- Solution (1):
 - Reprocess with VmDAS; use heading (10 hours)
 - Run through CODAS matlab processing (2 hours)
- Solution (2):
 - Write additional CODAS software (many hours)
 - Stage VmDAS in UHDAS format (5 min)
 - Process as UHDAS data; use heading (15 min)

Things go wrong: VmDAS example (2)


- Problem: <u>Serial Snafu</u>
 - Gordon Gunter: intermittantly awful serial data

Things go wrong: VmDAS example (2)

\$GTG,A,054,35,27209.679,N7.5500.C 8,01HDT,354.5,-2.4,M8685.4,8507.0,03,W*6D \$GPM.0,356,13358,M \$H.4.N.3543.K* \$GPG,3505453572727..5,5,N,.6,00.45 \$GW,2,,0501.0,272\$PADCP,4910,20110507,054659.19,70.00 5,M,94,.4,M,00.0,01,W,65 ,01HDT,354.3,-2 \$GPM,0,355,13358,M \$H.3.N.3542.K* \$GPG,3505453582727..4,1,N,.5,00.45 \$GW,2,,0501.0,2726,M,20,.4,M,00.0,01,W,64 ,01HDT,354,M,T \$GPVTG,354,T,356,M,09.3,N,17.2,KT Partial \$GPGGA position messages

Partial \$HEHDT heading messages

Number of characters per line

95: Vmdas examples

Things go wrong: VmDAS example (2)

Gordon Gunter: intermittantly awful serial data


- Solution for future cruises:
 - Fix it: direct serial feeds from GPS and gyro
- Solution: past cruises
 - Expert: use other data to patch in position, heading
 - MIGHT NOT WORK
 - Resulting Data quality: unknown
 - NOT TESTED; expert level processing; timeconsuming

Things go wrong: VmDAS example (3a)

- Problem: Bad setup
 - Walton Smith: POSMV = the ONLY heading source

and not rock solid (heading errors)

Things go wrong: VmDAS example (3a)

98: Vmdas examples

Things go wrong: VmDAS example (3a)

POSMV is unhealthy and is the only heading source

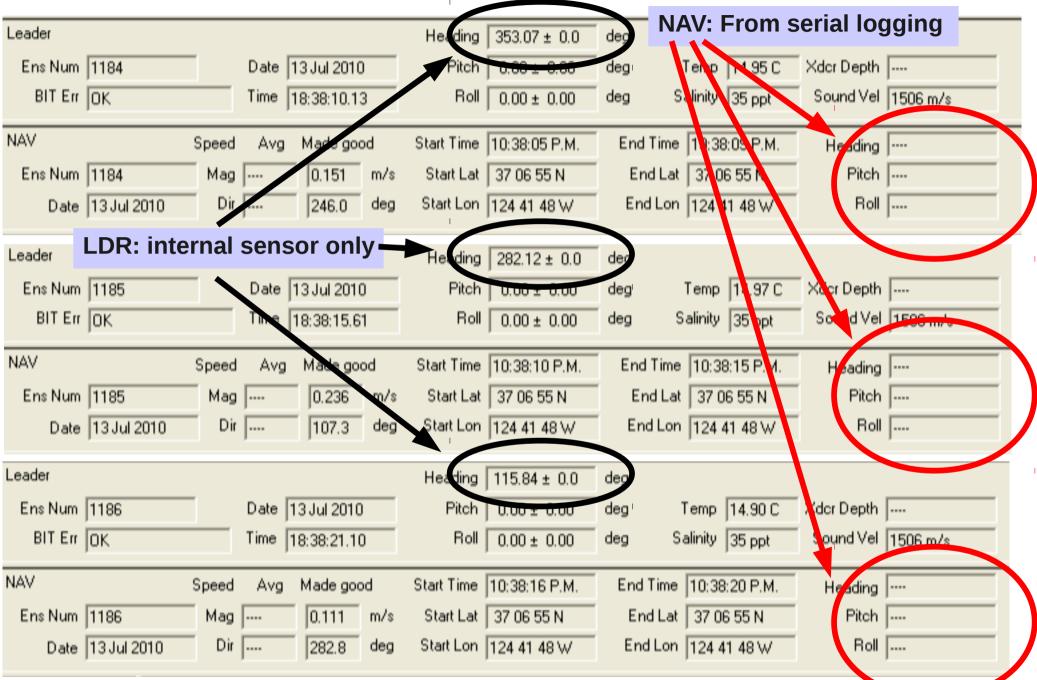
- Solution for future cruises:
 - Log gyro as well
- Solution for past cruises:
 - Expert: use other data to patch in position, heading
 - MIGHT NOT WORK
 - Resulting Data quality: unknown
 - NOT TESTED; expert level processing; timeconsuming

Things go wrong: VmDAS example (3b)

- Problem: Bad Acquisition Setup
 - MacArthur2: not acquiring heading at all

Heading is not being logged at all

(1) Only N1R files


(2) No heading field here:

\$GPGGA,230053,3642.4520,N,12214.4982,W,1,8,2.0,19,M,-30,M,, \$GPVTG,20.4,T,5.4,M,2.1,N,3.8,K \$GPZDA,230053,17,07,2010,0,0 \$GPRMC,230053,A,3642.4520,N,12214.4982,W,2.1,20.4,170710,15,E*7F \$GPGLL,3642.4524,N,12214.4982,W,230054,A \$GPGGA,230054,3642.4524,N,12214.4982,W,1,8,2.0,19,M,-30,M,, \$GPVTG,18.0,T,3.0,M,2.0,N,3.7,K \$GPZDA,230054,17,07,2010,0,0 \$GPRMC,230054,A,3642.4524,N,12214.4982,W,2.0,18.0,170710,15,E*72 \$GPGLL,3642.4530,N,12214.4981,W,230055,A \$GPGGA,230055,3642.4530,N,12214.4981,W,1,8,2.0,19,M,-30,M,,

(3) VmDAS "Transform" Tab – nothing selected!

101: Vmdas examples

Heading not used

102: Vmdas examples

Things go wrong: VmDAS example (3b)

MacArthur 2 – not logging heading at all

- Solution for future cruises:
 - Fix it: Acquire Heading
- Solution for past cruises:
 - Expert: use other data to patch in position, heading
 - MIGHT NOT WORK
 - Resulting Data quality: unknown
 - NOT TESTED; expert level processing; timeconsuming

Things go wrong: VmDAS examples

- Problem: Bad luck
 - Various ships: 3 beams (for many months)
- Solution for past cruises:
 - Process data using 3-beam solutions
 - Data quality reduced
- Solution for future cruises:
 - Replace/repair instrument

NOAA Newport 2012 ADCP

Part II: UHDAS

- ADCP Processing with CODAS
- UHDAS: What it does
- Monitoring
 - At sea
 - On Land
- What can be changed, tested

NOAA Newport 2012 ADCP

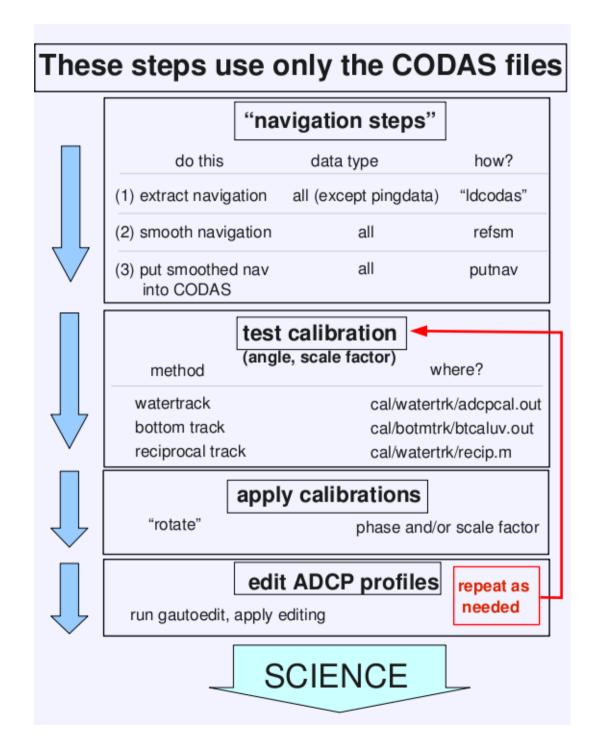
Part II: UHDAS

- ADCP Processing with CODAS
- UHDAS: What it does
- Monitoring
 - At sea
 - On Land
- What can be changed, tested

CODAS Processing Overview

CODAS: Common Ocean Data Access System

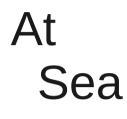
- Portable
- Self-descriptive
- aggregated files (vs/ netCDF which is one file)
- designed for ADCP data
- "CODAS Processing" \rightarrow produce ocean velocities
 - tools to access and modify CODAS files

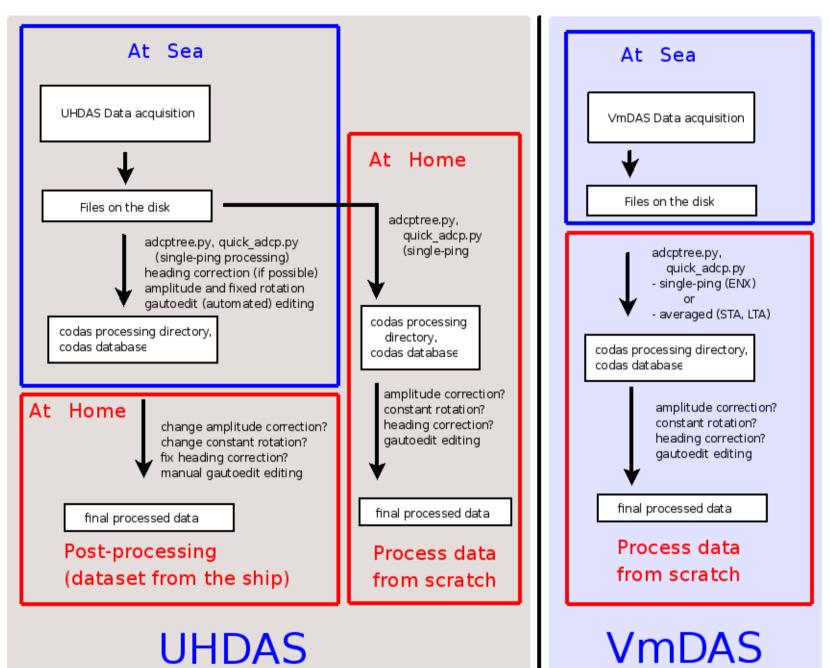

CODAS Processing Steps

- read ADCP + ancillary data
- [transform, edit single-pings, average]
- load into CODAS database
- nudge positions to get smooth reference layer
- apply heading corrections (calculated from difference between gyro and accurate heading)
- determine calibration values (angle, scale factor),
 - apply angle and scale factor
- edit out bad profiles of averaged data

Acquire the data, write to disk - Fill the CODAS database									
acquisition	data ste	load the database							
program name	averaged	singleping	translate to *.bin + *.cmd	executable (to load)					
DAS2.48	pingdata.*		(no)	loadping					
VmDAS	*.STA *.LTA		load_Ita.m	Idcodas					
VmDAS		*.ENR *.ENS *.ENX	load_ens.m	ldcodas					
UHDAS		*.raw	load_uhblk	Idcodas					

All subsequent steps use only the data in the CODAS files


109: CODAS


110: CODAS

CODAS Processing Supports...

Acquisition program	instrument	ping type		file type (suffix)	Averaged? or raw?		procesing in matlab? python?		
DAS2.48	NB150	nb		pingdata	avg		matlab		
VmDAS	Broadband or		bb	LTA, STA	avg		matlab	python	
	Workhorse			ENS, ENX		raw	matlab		
	Ocean	nb		LTA, STA	avg		matlab	python	
	Surveyor			ENS, ENX		raw	matlab		
				ENR(N1R,N2R)		raw		python	
			bb	LTA, STA	avg		matlab	python	
				ENS, ENX		raw	matlab		
				ENR(N1R,N2R)		raw		python	
		nb	bb	ENS, ENX		raw	matlab		
				ENR(N1R,N2R)		raw		python	
UHDAS	NB150,NB300	nb		raw		raw	matlab	python	
	Ocean	nb		raw		raw	matlab	python	
	Surveyor		bb	raw		raw	matlab	python	
		nb	bb	raw		raw	matlab	python	
	WH300		bb	raw		raw	matlab	python	

At Home

112: CODAS

NOAA Newport 2012 ADCP

Part II: UHDAS

- ADCP Processing with CODAS
- UHDAS: What it does
- Monitoring
 - At sea
 - On Land
- What can be changed, tested

UHDAS: what it does

- Data acquisition and processing
- Data access (for scientist at sea)
- Monitoring tools
 - at sea
 - from shore

UHDAS: what it does:

Data acquisition ...

- logs and timestamps data
- parses NMEA data (Matlab, Python)

.... and processing

- transforms (ADCP), grids (ancillary), edits (pings)
- averages, loads (into CODAS database)
- all CODAS processing

UHDAS: What it does:

Data Access...

- web site on ship with
 - 5-minute profile (updated 5min)
 - 3-day vector and contour plot (updated 30min)
 - matlab files via web (used in 3-day plots)
- full-resolution processed (5min averages) via
 - samba (windows share), NFS
 - Files in Matlab, NetCDF, or CODAS (+access tools)

UHDAS: What it does

Monitoring...

- at sea:
 - processing (web plots)
 - health of accurate heading device (web plots)
 - data acquisition (UHDAS tool)

• from shore:

- sends daily email with attachment
- diagnostic files
- data snippet
- shore-based figures generated from snippet

117: UHDAS: what it does

UHDAS cruise directory structure

Data for scientists:

There are three categories of data, all located in the logging directory, /home/data/[CRUISEID]:

ADCP logging directories

subdirectory	contents	importance	back up for
raw	all raw data	critical	 archiving scientists who ask for it
rbin	intermediate files	nice to have	anyone who gets raw
gbin	intermediate files	nice to have	anyone who gets raw
proc	 final processing codas database underway figure archive matlab files 	final product	science CDs after cruise

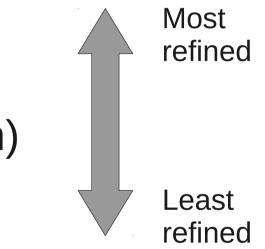
Cruise Sequence (for operator)

- Start UHDAS gui
- Start cruise
- Start logging; directory contents of..
 - raw
 - rbin
 - gbin
 - proc

UHDAS gui tool

X UHDA	5	_	_	_	_	_		_		0	>
Cruise ID: te	st111						os38 nt	150 Soundspe	ed Ashte	ch GPS Trm	Gyra
Control	Terminal	Monitor	Plots	Avg Plots	Log	Errors					
Cruis	Cruise Setup RDI os38 Data Collection Parameter						RDI nb150 Da	ta Collection Pa	arameters		
Cruise	ID: test111	Con	nmand	Range	New	Present	Command	Range	New	Present	
Star	rt Cruise	Narrowi	and Mode	ON or OFF	ON	ON	Number of Bins	5 to 128	50	50	
	C GIUISC	NB Num	ber of Bins	5 to 128	80	80	log2 of Bin Length (m)	2 to 4	3	3	
End	l Cruise	NB Bin L	.ength (m)	16 to 64	24	24	Pulse Length (m)	4 to 16	8	8	
		NB Blau	nking (m)	4 to 90	16	16	Blanking (m)	4 to 16	8	8	
Cruise Cruise Star Data Start Stop	Recording	Broadb	and Mode	ON or OFF	OFF	OFF	Bottom Track	ON or OFF	ON	ON	
Start	Recording	BB Num	ber of Bins	5 to 128	100	100			Comm	ands	
		BB Bin L	.ength (m)	8 to 64	12	12	Restore Defaults				
Stop	Recording	BB Bla	nking (m)	4 to 90	16	16			Q050		
		Botto	m Track	ON or OFF	ON	OFF	Load File		L3		
		BT max	depth (m)	100 to 2000	1000	1000			108 J080 FH00		
		TP min pi	ng time (s)	0 to 6	to 6 3.00 3.00		Save File		FHUU	001	
					Comm	ands		J			
		Restor	re Defaults		NP1 NN80			Ŀ			
					NS240						
		Lo	ad File		NF1600 WP0 WN100						
					WS1200						
		Sa	ve File		WF1600 BP1 BX10000						
					TP00:						
1											

NOAA Newport 2012 ADCP


Part II: UHDAS

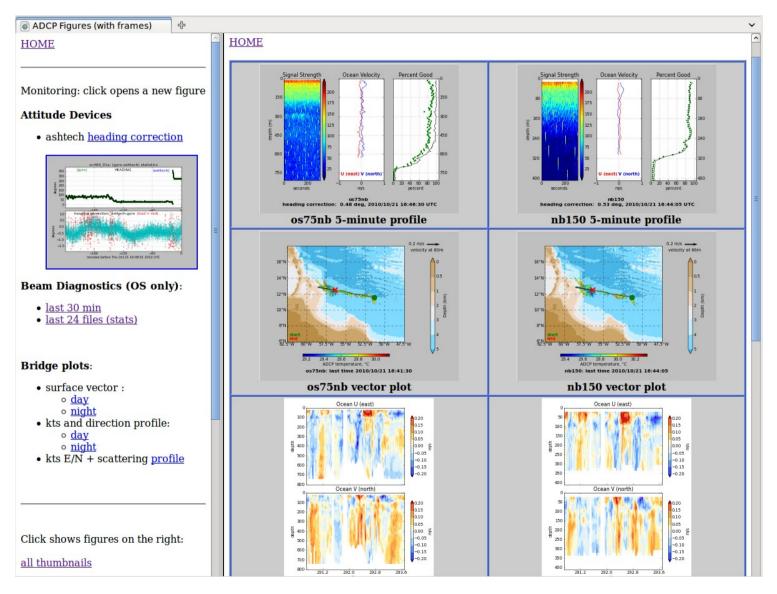
- ADCP Processing with CODAS
- UHDAS: What it does
- Monitoring
 - At sea
 - On Land
- What can be changed, tested

Monitoring: At Sea

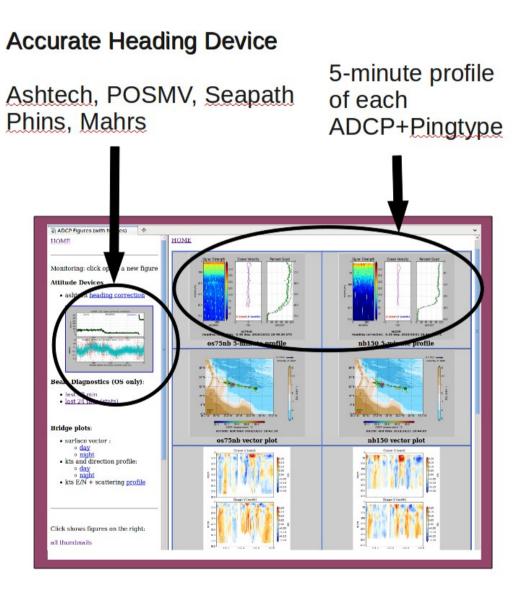
There are three categories of monitoring:

- (1) CODAS Processing
- (2) health of components (Ashtech)
- (3) data acquisition

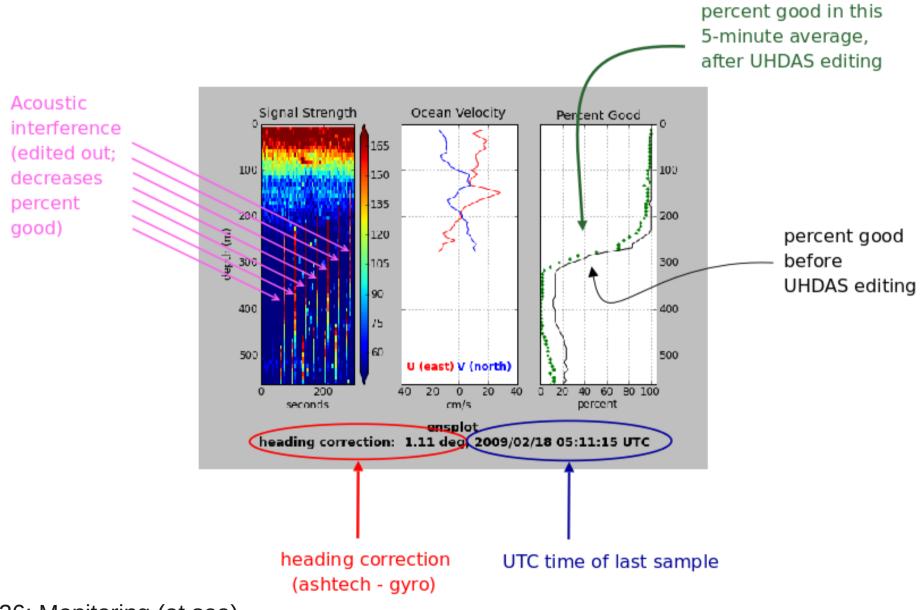
Example at-sea web site

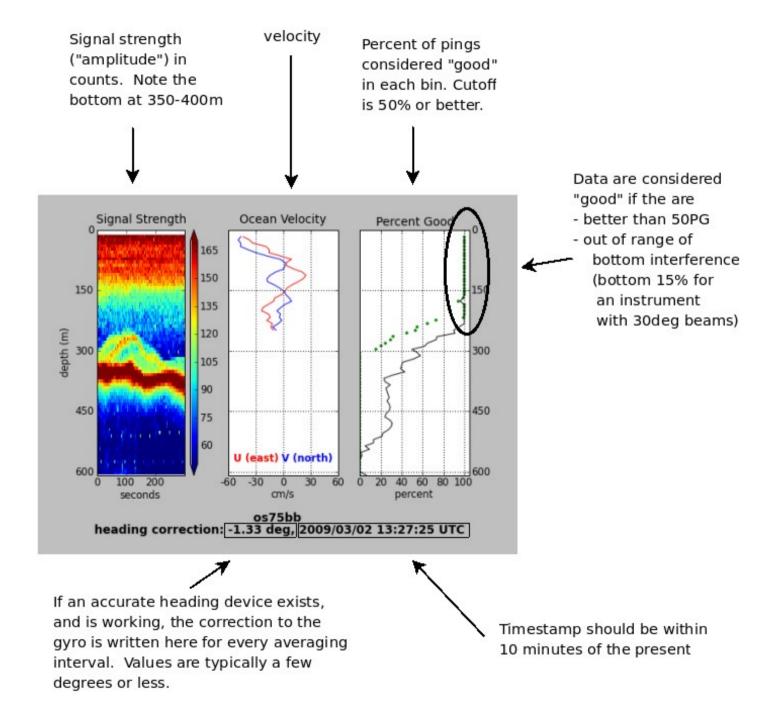

Monitoring: At Sea

There are three categories of monitoring:

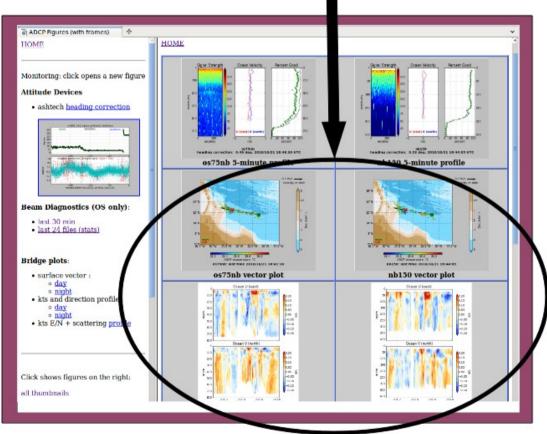

(1) CODAS Processing

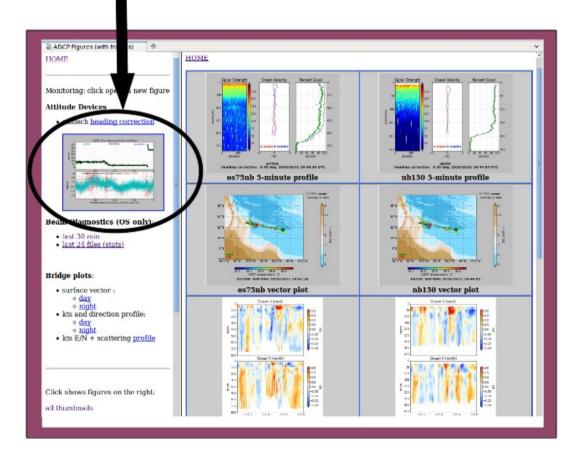
- (2) health of components (Ashtech)
- (3) data acquisition


Monitoring At Sea: UHDAS web site



Monitoring the 5-minute timer: Check: less than 10 minutes old?


UHDAS average (5-minute) profile plot


Monitoring the 30-minute timer: Check: less than 1 hour old?

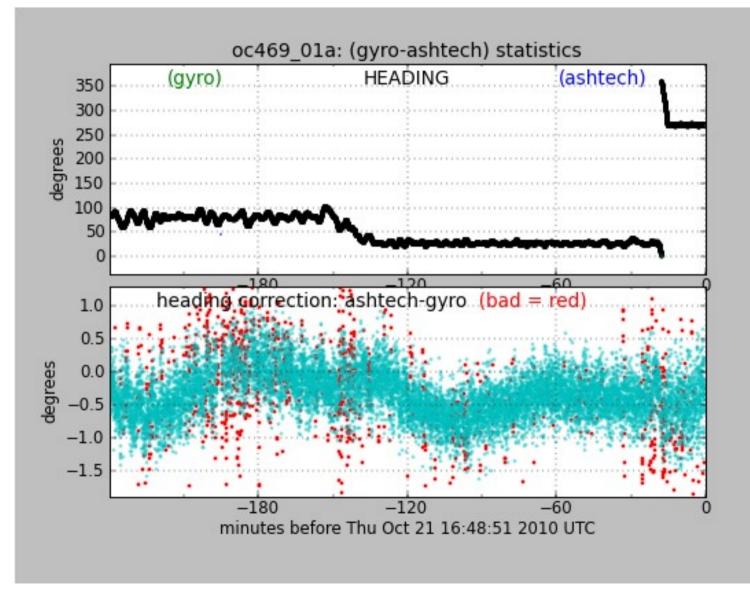
plot of last 3 days of data generated every 30 minutes one for each ADCP+Pingtype

Monitoring the accurate heading device: Is it working?

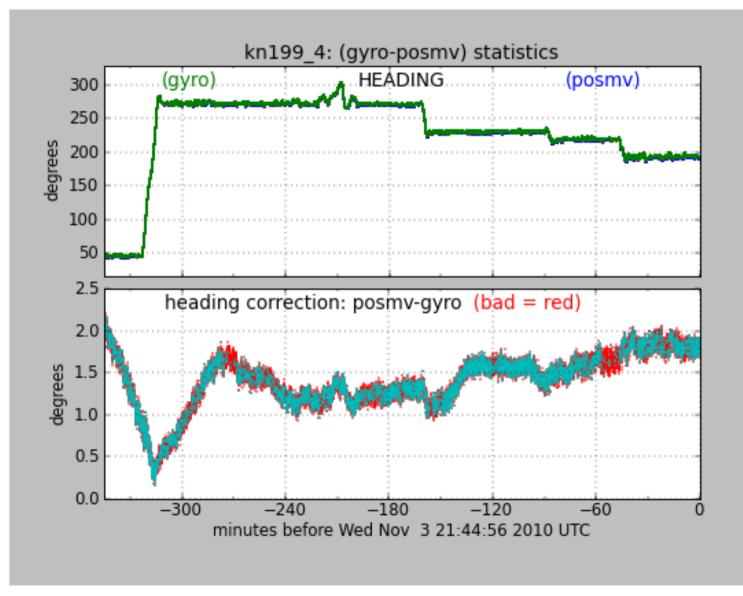
Accurate but possibly intermittent attitude device: figure updates every 5 minutes.

Monitoring: At Sea

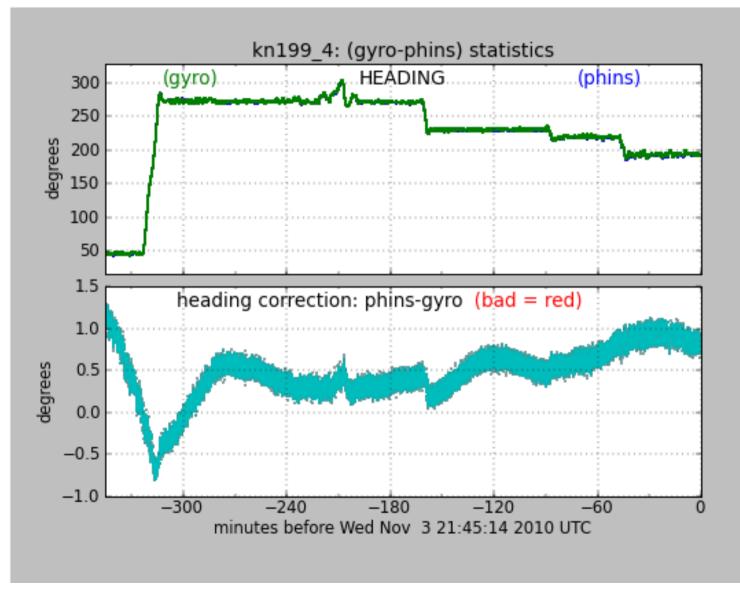
There are three categories of monitoring:


(1) CODAS Processing (2) health of components (Ashtech)

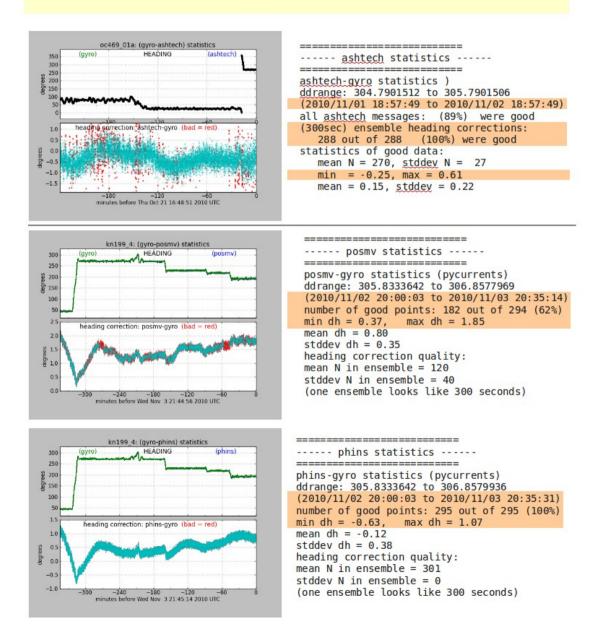
(3) data acquisition


Attitude Health

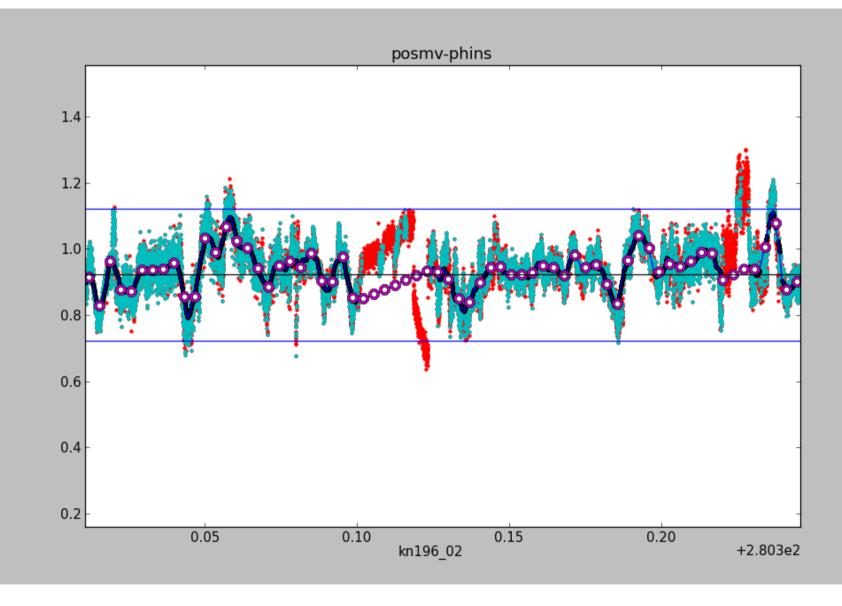
- Examples of
 - Ashtech
 - POSMV
 - Phins
- Statistics generated for all 3
- Example of POSMV in trouble


Ashtech

POSMV



Phins



Statistics generated in daily email for three cases

Accurate heading device: examples

POSMV in trouble

Monitoring: At Sea

There are three categories of monitoring:

- (1) CODAS Processing
- (2) health of components (Ashtech)
- (3) data acquisition

Monitoring At Sea: data Acquisition

ID: H	LY10TC_14							os150) os75 (GP90 GP8	МКЗ9 ду	<mark>ro</mark> MK27 gy	ro Ashteo
irol	Terminal	Ionitor	5-minPlot	ContourPlot	VectorPlot	BridgePlot	HeadingPlot	Log	Errors				
	os150 tty_dgnc_0_ Logging	0 Sta Go Erro	od: 29	2010/06/08 03:2 2010/06/08 03:27	159 159 159 159	03:27:55 hlý201 03:27:57 hly201	0_158_07200.raw 0_158_07200.raw 0_158_07200.raw 0_158_07200.raw	5107740 5109870	2130 2130				
	os75 tty_dgnc_0_ Logging	7 Go Erro	od: 19	2010/06/08 03:2 2010/06/08 03:28	:00 <mark>159</mark> 159	03:27:53 hlý201 03:27:57 hlý201	0_158_07200.raw 0_158_07200.raw 0_158_07200.raw 0_158_07200.raw	2415600 2417250	1650 1650				
	GP90 GPS tty_dgnc_0_ Logging	2 Go Erro	od: 66	2010/06/08 03:2 2010/06/08 03:28	:01 \$GP	PGGA,032758.56 PGGA,032759.56	5,4915.6323,N,16 5,4915.6368,N,16 5,4915.6415,N,16 5,4915.6415,N,16	419.7575, 419.7586,	W,1,06,1 W,1,06,1	.3,018.1,N .3,018.4,N	I,-007.7,М, I,-007.7,М,	,*5B ,*5E	
	MK39 gyro tty_dgnc_0_ Logging		od: 1	2010/06/08 03:2 2010/06/08 03:27	':43	HDT,347.67,T*14							
	MK27 gyro tty_dgnc_0_ Logging	r	od: 73	2010/06/08 03:2 2010/06/08 03:28	:01 \$HE \$HE	HDT,349.79,T*1 HDT,349.75,T*1 HDT,349.77,T*1 HDT,349.79,T*1	3 1						
	Ashtech tty_dgnc_0_ Logging	1 Go Erro	od: 132	2010/06/08 03:2 2010/06/08 03:28	:01 \$GP	PAT,032800.00, PGGA,032801.00	,4915.64252,N,16 4915.64252,N,164 ,4915.64714,N,16 4915.64714,N,164	19.76000 419.76129	,W,00026),W,1,12,0	.50,348.9 0.8,18.62,)06,000.11 M,7.95,M,,	,000.48,0.001 *72	
	POSMV tty_dgnc_0_ Logging	3 Go Erro	od: 131	2010/06/08 03:2 2010/06/08 03:28	:00 \$IN(\$PA	GGA,032759.564 SHR,032800.564	I,348.61,T,0.40,0. ,4915.66953,N,16 I,348.65,T,0.50,-0 ,4915.67409,N,16	419.7683 .16,-0.04	3,W,1,08, 0.024,0.0	1.2,0.61,N 24,0.011,	4,,,,*38 2,1*17		

UHDAS: Monitoring from shore

Link to on-shore monitoring: UHDAS ships

- text email
- figures
- diagnostic files

UHDAS:

http://currents.soest.hawaii.edu/uhdas_fromships.html

Actual link

ship	schedules	figure links	daily report	daily email	instruments
N.B.Palmer	schedule	figs	dir	email	NB150, OS38
L.M.Gould	schedule	figs	dir	email	NB150, OS38
Livi.ooulu	schoude	1113			10130,0330
Atl. Explorer	2011, 2012	figs	dir	email	OS75
Atlantis	2011, 2012	figs	dir	email	0\$75
Endeavor	2011, 2012	figs	dir	email	WH300, OS75
Kilo Moana	2011, 2012	figs	dir	email	WH300, OS38
Knorr	2011, 2012	figs	dir	email	WH300, OS75
Langseth	2011 2012	figs	dir	email	OS75
Melville	2011, 2012	figs	dir	email	OS150, OS75
New Horizon	2011, 2012	figs	dir	email	OS75
Oceanus	2011, 2012	figs	dir	email	NB150, OS75
Revelle	<u>2011, 2012</u>	figs	dir	email	NB150, OS75
Sproul	<u>2011, 2012</u>	figs	dir	email	NB300
Thompson	2011, 2012	figs	dir	email	OS75
Wecoma	<u>2011, 2012</u>	figs	dir	email	WH300, OS75
Hi`ialakai		figs	dir	email	OS75
Ka`imimoana		figs	dir	email	OS75
Ron Brown		figs	dir	email	OS75
Healy		figs	dir	email	OS150, OS75
Ka`imikai O Kanaloa		figs	dir	email	NB150

140: Monitoring (from shore)

Monitoring: From Shore

- from the text email:
 - CODAS Processing
 - health of heading device (eg. Ashtech)
 - PC clock
 - Bottom track (on/off), ping rate (triggered)

from the diagnostic files:

- data acquisition
- processing
- troubleshooting

141: Monitoring (from shore)

Monitoring: From Shore

- from the text email:
 - CODAS Processing
 - health of heading device (eg. Ashtech)
 - PC clock
 - Bottom track (on/off), ping rate (triggered)

Description follows...

```
2010/11/03 20:40:01
currents 2.6.24-25-generic
                       ** is logging **
Current cruise: TN256
Database time ranges:
     os75bb 2010/10/23 18:14:25 to 2010/11/03 20:17:14 (22 min. ago)
---- heading correction ----
(heading correction from "posmv")
----- posmv -----
posmv gyrodh.asc
ddrange: 305.8656494 to 306.8552328
(2010/11/02 20:46:32 to 2010/11/03 20:31:32)
number of good points: 286 out of 286 (100%)
heading correction statistics:
min dh = -2.17, max dh = -0.41
mean dh = -1.14
stddev dh = 0.08
----- uptime -----
20:40:02 up 184 days, 22:13, 3 users, load average: 0.03, 0.22, 0.24
----- ntpg -p -----
                    refid
                             st t when poll reach delay offset jitter
    remote
_____
*ntpserver.thomp .GPS.
                              1 u 862 1024 377
                                                   0.427
                                                          -2.542 2.255
figures are at http://currents.soest.hawaii.edu/uhdas fromships/thompson/figs/
```

143: Monitoring (from shore)

2010/11/03 20:40:01

(1) Check the time of the email (this is UTC time)

This email was generated on the ship at 20:40 and mailed out shortly after that.

Expect: email is generated daily, sent shortly after creation

Indicator of a problem	How to proceed
email is over 24hrs old	check ship schedule: - are they in port for a long time? (computer may be off) - are they at sea? check with techs: is email and networking up?

2010/11/03 20:40:01 currents 2.6.24-25-generic		
Current cruise: TN256 ** is logging **		
Expect one of these (1) ** is logging ** (2) ** not logging ** (3) no cruise setserial acquisition is active 		d but not logging
Indicator of a problem	ł	How to proceed
Current cruise: LMG1007 ** DAS_while_logging.py is *no	is logging ** t* running.	Tech at sea should: - stop logging - start logging - make sure figures start updating

2010/11/03 20:40:01 currents 2.6.24-25-generic				
Current cruise: TN256 ** is logging ** Database time ranges:				
os75bb 2010/10/23 18:14:25 to 2010/11/03	20:17:14 (22 min. ago)			
Expect: all database times should be under 30min old				
Indicator of a problem How to proceed				
data are much older than 30min and DAS_while_logging.log is **not** running	Tech at sea should restart logging			
data are much older than 30 min and no other clue is given	look in daily_report directory for clues;			

```
2010/11/03 20:40:01

currents 2.6.24-25-generic

Current cruise: TN256 ** is logging **

Database time ranges:

os75bb 2010/10/23 18:14:25 to 2010/11/03 20:17:14 (22 min. ago)

---- heading correction ----

(heading correction from "posmv")

----- posmv -----

posmv_gyrodh.asc

ddrange: 305.8656494 to 306.8552328

(2010/11/02 20:46:32 to 2010/11/03 20:31:32)
```

number of good points: 286 out of 286 (100%)
heading correction statistics:
min dh = -2.17, max dh = -0.41
mean dh = -1.14
stddev dh = 0.08

Check the percentage of good points. If less than 80, tech at sea should check the device

```
2010/11/03 20:40:01
currents 2.6.24-25-generic
Current cruise: TN256
                    ** is logging **
Database time ranges:
     os75bb 2010/10/23 18:14:25 to 2010/11/03 20:17:14 (22 min. ago)
---- heading correction ----
(heading correction from "posmv")
----- DOSMV -----
posmv gyrodh.asc
ddrange: 305.8656494 to 306.8552328
(2010/11/02 20:46:32 to 2010/11/03 20:31:32)
number of good points: 286 out of 286 (100%)
heading correction statistics:
min dh = -2.17, max dh = -0.41
mean dh = -1.14
stddev dh = 0.08
----- uptime -----
20:40:02 up 184 days, 22:13, 3 users, load average: 0.03, 0.22, 0.24
  ----- ntpg -p -----
                              st t when poll reach
                                                   delay offset jitter
    remote
                    refid
_____
*ntpserver.thomp .GPS.
                               1 u 862 1024 377
                                                   0.427
                                                          -2.542
                                                                   2.255
   Expect
   (1) floating point numbers
   (2) ntp not active
   Problem: if numbers are all 0.000
```

```
2010/11/03 20:40:01
currents 2.6.24-25-generic
                       ** is logging **
Current cruise: TN256
Database time ranges:
     os75bb 2010/10/23 18:14:25 to 2010/11/03 20:17:14 (22 min. ago)
---- heading correction ----
(heading correction from "posmv")
----- DOSMV -----
posmv gyrodh.asc
ddrange: 305.8656494 to 306.8552328
(2010/11/02 20:46:32 to 2010/11/03 20:31:32)
number of good points: 286 out of 286 (100%)
heading correction statistics:
min dh = -2.17, max dh = -0.41
mean dh = -1.14
stddev dh = 0.08
----- uptime -----
20:40:02 up 184 days, 22:13, 3 users, load average: 0.03, 0.22, 0.24
----- ntpg -p -----
                   refid
                             st t when poll reach delay offset jitter
    remote
_____
*ntpserver.thomp .GPS.
                             1 u 862 1024 377 0.427 -2.542 2.255
figures are at http://currents.soest.hawaii.edu/uhdas fromships/thompson/figs/
  check the figures in the link
```

Steps to check daily email:

Observations:

- (1) two ping types (OS75 interleaved mode)
- (2) data from different types are consistent
- (3) data are physically reasonable
 - no big gaps
 - no big outliers
 - no deep strong currents
 - depth ranges are reasonable

Check: (text email)

BOTTOM TRACK should be OFF

Monitoring: From Shore

from the diagnostic files:

"tails.txt"

- data acquisition
- processing
- troubleshooting

"cals.txt"

calibration

Diagnostics reminder: UHDAS cruise directory structure

Data for scientists:

There are three categories of data, all located in the logging directory, /home/data/[CRUISEID]:

ADCP logging directories

subdirectory	contents	importance	back up for
raw	all raw data	critical	 archiving scientists who ask for it
rbin	intermediate files	nice to have	anyone who gets raw
gbin	intermediate files	nice to have	anyone who gets raw
proc	 final processing codas database underway figure archive matlab files 	final product	science CDs after cruise

File tails.txt shows recent contents of raw, rbin, gbin

UHDAS diagnostic file: tails.txt

- last 12 lines of each NMEA (or log) file
- last 12 raw files (each kind)
- last 12 rbin files (each kind)
- last 12 gbin files (each kind)

UHDAS diagnostic file: **cals.txt**

keep an eye on calibration

Good ADCP Calibration numbers

2010/11/05 20:40:02

----- BOTTOM TRACK -----unedited: 310 points edited: 214 points, 2.0 min speed, 2.5 max dev median mean std amplitude 1.0020 1.0033 0.0118 0.0358 0.3278 phase 0.0679 ----- WATER TRACK -Number of edited points: 85 out of 90 median std mean amplitude 0.9990 1.0004 0.0116 phase -0.0200 -0.0989 0.7160 Phase (angle misalignment) should be between -0.5 and +0.5 degrees

NOAA Newport 2012 ADCP

Part II: UHDAS

- ADCP Processing with CODAS
- UHDAS: What it does
- Monitoring
 - At sea
 - On Land
- What can be changed, tested

UHDAS: what can be changed (not much)

with the UHDAS tool:

- bb, nb mode (OS75, OS150)
- bottom tracking on/off
- bin size (and blank)
- if required (carefully edit sensor_cfg.py)
- serial port, baud rate

UHDAS: what they'll ask for

"It's up to you but I don't recommend it"

- smaller bins than the default
- bottom tracking on
 - Does not solve anything
 - Most useful for troubleshooting

UHDAS: what they'll ask for

"I think the answer is 'no' but ask Jules"

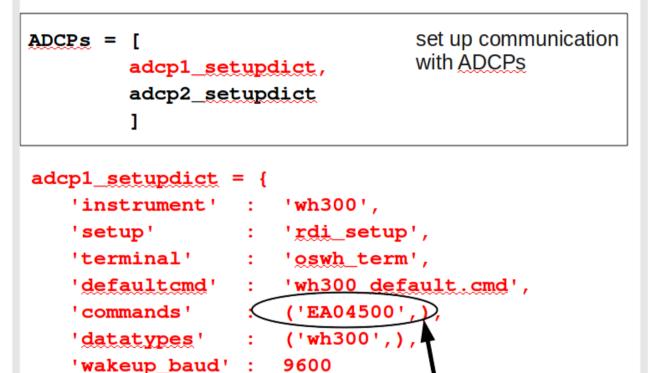
- more rapid updating of the database
- finer grain than 5min averages

The answer is '**no**', in order to preserve the reliability of the UHDAS installation

Configuration Files (expert)

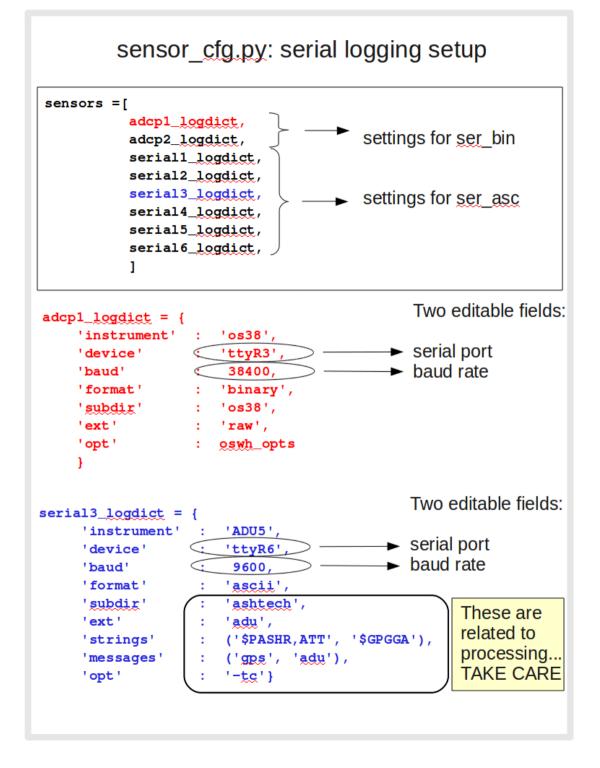
- proc_cfg.py
 - transducer angle
 - serial inputs used for transformations
- uhdas_cfg.py
 - averaging interval
 - timers (5min, 30min)
 - bin range for bridge plots and vector plot
 - email
- sensor_cfg.py
 - ports
 - baud rates
 - messages

Block diagram of sensor_cfg.py


This is a python program. Python is sensitive to Case Indentation

Punctuation

sensor_cfg.py


## header comments				
<pre>ignore_ADCPs = [] ignore_other_sensors = []</pre>	editable – ignore ADCP or other sensor			
<pre>shipabbrev = "km"</pre>	ship designation			
<pre>ADCPs = [adcp1_setupdict, adcp2_setupdict]</pre>	set up communication with <u>ADCPs</u>			
common_opts = '-f %s -F -m 1 -H 2 ' % (shipabbrev,)				
nb_opts = '-rlE -c -I' oswh_opts = '-rlE -c -O -I'	switches for <u>ser_asc</u> and <u>ser_</u> bin (logging)			
sensors =[
<pre>adcp1_logdict, adcp2_logdict, serial1_logdict, serial2_logdict,</pre>	<pre>} → settings for ser_bin</pre>			
<pre>serial3_logdict, serial4_logdict, serial5_logdict, serial6_logdict,]</pre>	Settings for <u>ser_asc</u>			
<pre>speedlog_config = {}</pre>	speedlog out (busted)			
ADCPs = sensors =	redefine according to "ignore"			

sensor_cfg.py : ADCP setup

Only one editable field in this block: This "EA" command must be similar to (within 5-10deg) of the transducer angle, <u>i.e.</u> the angle beam 3 makes from the bow (viewed clockwise from above).

It is CRITICAL to get the EA command in the right ballpark. A bad specification can irrevocably damage the data

UHDAS/CODAS NOAA Presentation: Links to the documentation

Part I: ADCP

- Getting Ocean Velocity
- ADCP Acquisition Systems:
 - VmDAS (TRDI), UHDAS
- What can go wrong
- Part II: UHDAS
- ADCP Processing with CODAS
- What it does
- Monitoring (at sea, from shore)
- What can be changed, tested