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(a) January Longitude
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The low pressure in the North Pacific (Aleutian Low) and in the North Atlantic
(Icelandic Low) these ocean basins. Notice also the highs that are to the south
(Pacific High, Bermuda High). Note the position of the ITCZ (center of tropical
convection and the base of the Hadley cell).




July Average Surface Map
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The surface flow

in the Southern
Hemisphere is much
smoother and less
wavy due to less
prominent land masses.
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(b) July Longitude

Notice: Pacific High pressure dominates the North Pacific during the summer. The
Bermuda High is also more prominent during summer (it is this feature that steers

hurricanes in the Atlantic). These high pressure systems also shift as the ITCZ
moves northward
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When is Coriolis important?

Standard answer: Compare terms in the momentum equations.

ou U
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Advection ~ ( ax) N ( L )

Coriolis ()  (fU)

U
~ — = Ro ="Rossby Number"
fL

When Ro >> 1, Coriolis is NOT important

When Ro <1, Coriolis 1s important



Coriolis Deflection
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http://abyss.uoregon.edu/~js/glossary/coriolis_effect.html



When is Coriolis important?

Answer: When Coriolis deflection is “big”.

One definition of “big”...

2
First Recall: O = &
U

Compare 0 to L :
L U
o fL
When Ro >> 1, Coriolis 1s NOT important

When Ro <1, Coriolis 1s important

Ro




Coriolis Effect
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Geostrophic Balance

Most common force moving water
is PRESSURE (Pt> difference
(gradient), which forces water in
the direction from High to Low
water pressure.

But now, with rotation, as soon as
particle starts to move down
Pressure gradient, a Coriolis force
(CF) at right angles starts to build;
the stronger the flow, the stronger
the force to the right (in the
northern hemisphere).

Eventually, CF and P are balanced,
so particle has no force acting
(continues at same velocity).

In northern Hemisphere, particles
move with high pressure on the
right

Flow is not down P gradient, but
along it.
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Geostrophic Balance
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* High Pressure to RIGHT of
velocity in northern hemisphere

* High Pressure to LEFT of
velocity in southern hemisphere

Barotropic Pressure Gradient

Pressure o
Gradient Coriolis
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Geostrophic Balance

Baroclinic Pressure Gradient
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Geostrophic Balance

Barotropic + baroclinic pressure gradient

<
| x ocean Surfacs

Drawn for northern hemisphere



Coriolis effect on circulation around low and high pressure systems
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High pressure Low pressure
Clockwise (N. Hemi.) Counterclockwise (N. Hemi.)
Anticyclonic Cyclonic
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* Big seasonal changes in the
atmosphere

 \Winds reverse direction

High pressure is to the right
of the direction of the wind.

Huyer (1983)



Within the last 15 years, we can measure the sea surface
height using satellite altimetry.

Four-Year Mean Sea-Surface Topography (cm)
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Figure 10.5 Global distribution of time-averaged topography of the ocean

from Topex/Poseidon altimeter data from 10/3/92 to 10/6/99 relative to
the jgm-3 geoid.

Intro to PO, 2008



PACIFIC SURFACE _ANALYSIS - / SURFACE _ANALYSIS -
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metal cylinder frontal surface
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Figure 7.15: We place a large tank on our rotating table, fill it with water to a depth of

10 cm or so, and place in the center of it a hollow metal cylinder of radius r, =6 cm,

which protrudes slightly above the surface. The table is set into rapid rotation at 10 rpm
and allowed to settle down for 10 minutes or so. While the table is rotating, the water
within the cylinder is carefully and slowly replaced by dyed, salty (and hence dense)

water delivered from a large syringe. When the hollow cylinder is full of colored saline
water, it is rapidly removed to cause the least disturbance possible—practice is
necessary! The subsequent evolution of the dense column is charted in Fig. 7.16. The
final state is sketched on the right: the cylinder has collapsed into a cone whose surface is
displaced a distance dr relative to that of the original upright cylinder.

Copyright © 2008, Elsevier Inc. All rights reserved.



mirror reflecting side view
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salt water sinking under
gravity and rotation

Figure 7.16: Left: Series of pictures charting the creation of a dome of salty
(and hence dense) dyed fluid collapsing under gravity and rotation. The fluid
depth is 10 cm. The white arrows indicate the sense of rotation of the dome.
At the top of the figure we show a view through the side of the tank
facilitated by a sloping mirror. Right: A schematic diagram of the dome
showing its sense of circulation.

Copyright © 2008, Elsevier Inc. All rights reserved.
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Copyright © 2008, Elsevier Inc. All rights reserved.

Dense core — cyclonic rotation

Light core — anticyclonic rotation



GFD Trivia: Geostrophic Flow is
Non-divergent
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Thermal Wind
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The mysterious world of ...

Vagn Walfrid Ekman

1874 - 1954

Wind
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Equations of motion
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We are interested In the balance
between Coriolis and wind stress.
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Balance between Coriolis and Wind
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p 0z
9
0=—fu+ 2l
o 0z
0=_19P _
o 0z

+— + =0, 1

ou
x = IOAza_Z’ Ty = pAz

stress

Wind stress is parameterized
A, is vertical diffusivity.

Oceanic value ~ 102 m2s-
av
0z



Ekman Transport

Ekman Transport — U F = f udZ

on X

Unit: m2s1

Ekman Transport =— VE = f VdZ

ony



Ekman (1905) wind stress

i

Ekman Transport:

Due to wind and the Earth’ s e <

Iayer -
Sl .,h-.xe;;;‘.;fl""f‘\' s
P et =

rotation o

force

Always to the right of the Win‘d‘ |
in Northern Hemisphere.

(b)

T
U -
£ IO f (rx,ry) = Wind stress on x and y
- 0 = Density of Sea Water
V= X f = Coriolis parameter (Earth rotation rate)
E



Wind Forcing at the Ocean Surface

- Wind-forcing can generate currents and waves, as
wind transfers some of its momentum into the ocean

 Wind acts via friction at the surface: wind stress T

@;asi,

Stresses have units of N/m?, (force/area), like pressure.
Stresses are forces parallel to a surface, pressure is force
perpendicular to the surface.

- Force/Area depends on the square of the wind speed

u, and it pomts in the same direction as the wmd
T oy’ C, = drag coefficient =1.4x107

_pacﬂ‘”‘” 0, =density of air ~1.3kg /m’

Example: 20kt wind = 10 m/s — 0.18 N/m? = 1.8 dyne/cm?



Vertical structure of u and v
(Ekman spiral)

iTSy 5 Z : Z ]
U= e’ |cos| -=|-sin| -=
polf| | ( 5) ( 5)_

v = Z . Z\
V = ed% |cos|-=|+sin|-=
polf| | ( 5) ( 5)_

Don’ t memorize u and v.
2A
0 = W 0 Is Ekman depth: Decay depth

of Ekman spiral. Depth of
frictional influence.

You want to understand the meaning of this depth.




Ekman Spiral

1. Ocean at surface is dragged by wind, but then acted on by Coriolis

Force. Current at surface are 45° to right of wind in Northern

Hemisphere.

2. Friction transmits stress (drag) downward within water column: upper
layer rubs on layer below and moves it. But response will be weaker

(frictional losses) and further to the right.
3. Process continues down through
water column.

4. Creates a spiral, decaying with
depth. This is the Ekman spiral.

5. Typical decay depths are 10-30 m.

S Wiadsworth Publishing Company/ITP
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What does the real oceanic surface boundary layer look like?

.y

surface , -
mixed layer

Q, surface heat flux

transition
layer

interior

FiG. 20. Schematic summarizing some of the characteristics
of the surface boundary layer in a coastal upwelling region: u,
= (75/po)"’? is the shear velocity and U is the cross-shelf transport
in the surface mixed layer plus the transition layer.

Lentz, 1992



Example: Calculate Ekman Transport on y

Wind data by QuickSCAT from OrCOOS (
http://agate.coas.oregonstate.edu/data_index.html)

04—Nov—2009 — 11-Nov-2009

1. = 0.2 N/m?

t,= 0.1 N/m?

p =1025 kg/m?
f=2Qsine = 1.03x104s"!

Ug = 1/pf =+1 ms
Vi =—1/pf =2 m?/s

— /- / = R,

130°W 128°W 126°W 124°W 122°wW

0 0.1 02 0.3 04 Nm™2



Summary

Ekman spiral is due to wind stress and
the Earth’ s rotation which is decaying with
depth. Decay depth is Ekman depth.

Current at surface are 45° to right of wind
In Northern Hemisphere.

Vertical integration of Ekman spiral is
Ekman transport (U and V).

Ekman transport is always to the right of
the wind in Northern Hemisphere.



Upwelling/Downwelling driven by the presence of a coastal

boundary:

Water moving ofishoee
due to Coriolis effect

a Upwelling

Wind from
south
Water moveng onshore
dua 10 Coriolls effect
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1998 Wadsworth Publishing Company/ITP

Coastal Upwelling:

Wind to South. Ekman transport in
surface layer is to right of wind (West).
Flow is divergent at the coast. Deeper
water is upwelled into near-surface.

Primarily seen during spring/summer
off Oregon coast.

Coastal Downwelling:

Wind to North. Ekman transport in
surface layer is to right of wind (East).
Flow is convergent at the coast. Deeper
vertical velocity 1s downward.




Upwelling/Downwelling with Stratification

RN T=20
~
N T=18
\
N T=16
Upwelling

 Cold deep water brought to
surface near coast

* Nutrients (max near bottom)
brought up to surface

e Creates fronts in T,S

Downwelling

» Surface water transported to
coast

 Warm surface water forced
downward

-~
-
il T

" Continental
slope

Wind

Water mass movements ——
(© 1992 Wadsworth Publishing Company/ITP



Coastal Upwelling: Sea Surface

Temperatures b
46N [

Coldest temperatures near coast.
45N

Surface water at the coast came
from deeper in the water column.
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