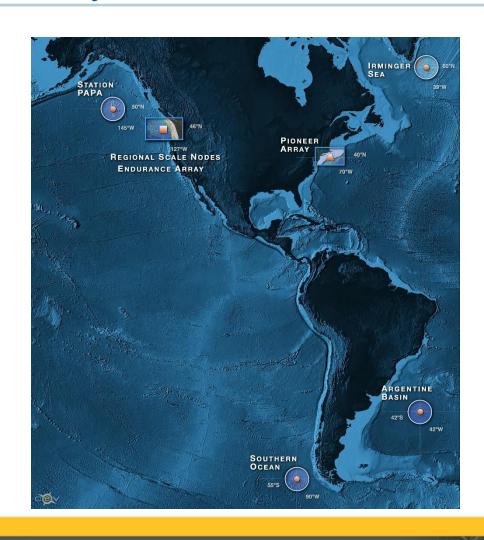
OOI Data Flow and Data Access

Michael F Vardaro, M. Crowley, L. Belabbassi, M. Smith, L. Garzio, F. Knuth, J. Kerfoot, S. Glenn, O. Schofield, S. Lichtenwalner

Rutgers University, Dept. of Marine & Coastal Sciences, New Brunswick, NJ

1.00l & Data Team Intro

2.00I Data Flow


3.00l Data Access

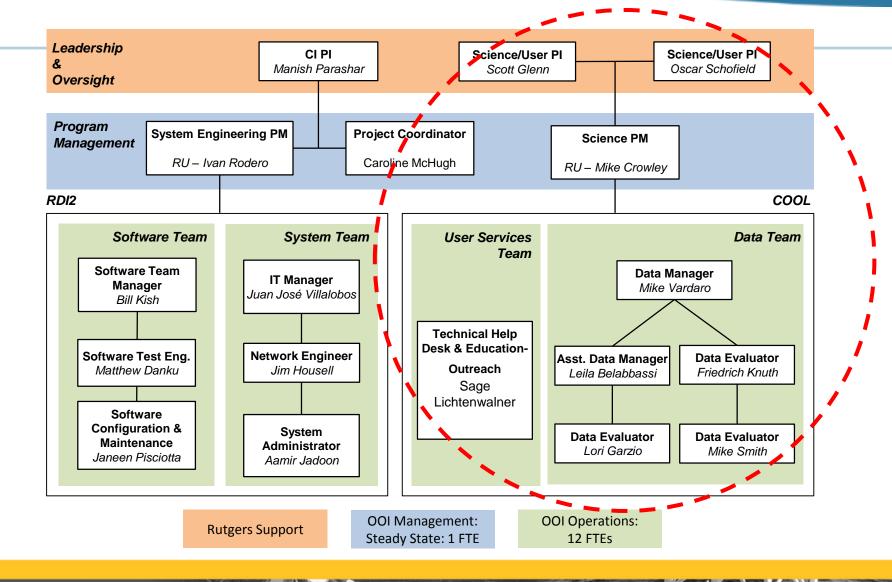
OOI By the Numbers

Arrays

Stable Platforms Moorings, Profilers, Nodes

32 Mobile Asse Gliders, AUVs **Mobile Assets**

>850 Instruments


>2500 Science Data Products

>100K Science/Engineering Data Products

Data Team

Data Evaluation Procedures & Tools

- Data QA/QC and Sampling Plan:
 - 1102-00300_QAQC_Cal_Physical_Samples_OOI
- Sampling Strategy Document:
 - 1102-00200_Observation_and_Sampling_Approach_OOI
- Data Product Specifications:
 - 1341-000xx (DPS) and 1342-000xx (Data Flow)
- Calibration Information
 - <u>github.com/ooi-integration/asset-management</u>
- Data Product and QC Algorithms:
 - github.com/ooici/ion-functions/tree/master/ion_functions
- Quality Control Lookup tables:
 - <u>github.com/ooi-integration/qc-lookup</u>
- Data Team download and plotting tools:
 - o github.com/ooi-data-review

Quality Control

QA/QC and Physical Sampling Protocols & Procedures

The purpose of this document is to describe the Protocols and Procedures for Quality Assurance (QA) and Quality Control (QC) for the OOI data and data products and physical samples. This includes calibration and field verification procedures.

DOWNLOAD HERE

Data Management Team

The data management component of the OOI, including data quality control, is co-located with the Cyberinfrastructure (CI) group at Rutgers University. The data management group works with the CI team on the design, operation and optimization of the data management infrastructure and processes. They play a key role monitoring and evaluating data quality to create quality controlled data streams for the OOI user community. Visit the program management page for more information about the Data Management Team.

Instrument Calibration

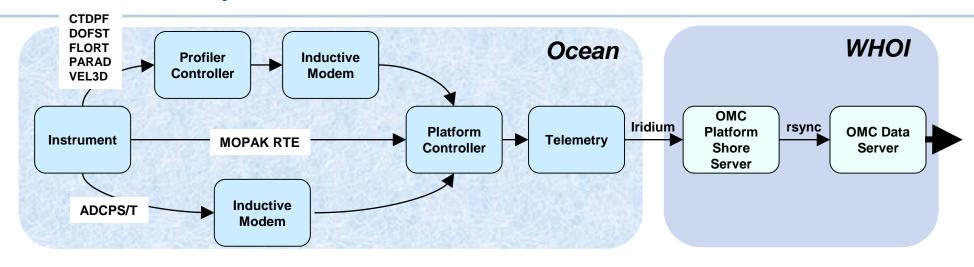
All OOI sensors are calibrated prior to deployment and subjected to pre-deployment testing. Additionally, during OOI deployment/recovery cruises, hydrographic rosette casts are conducted and water samples are collected for cross-calibration of specific parameters. These data are accessible to all users

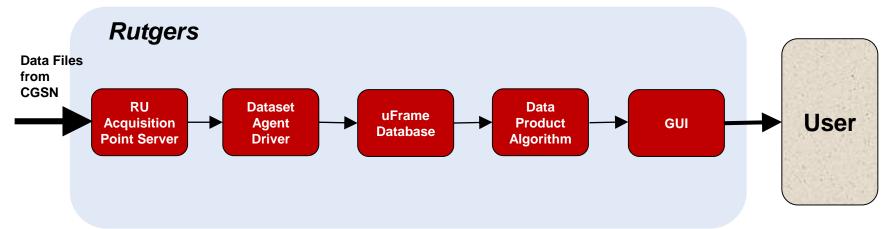
Instruments are turned over and replaced with new or refurbished units on a standard scheduled that varies by platform and array. The current OOI refurbishment schedule is contained in section 3.4 ("Platform Service Intervals") of the OOI Observation and Sampling Approach document (#1102-00200). This schedule is subject to change as the system matures and more information is gained about platform and instrument longevity.

Automated QC Algorithms

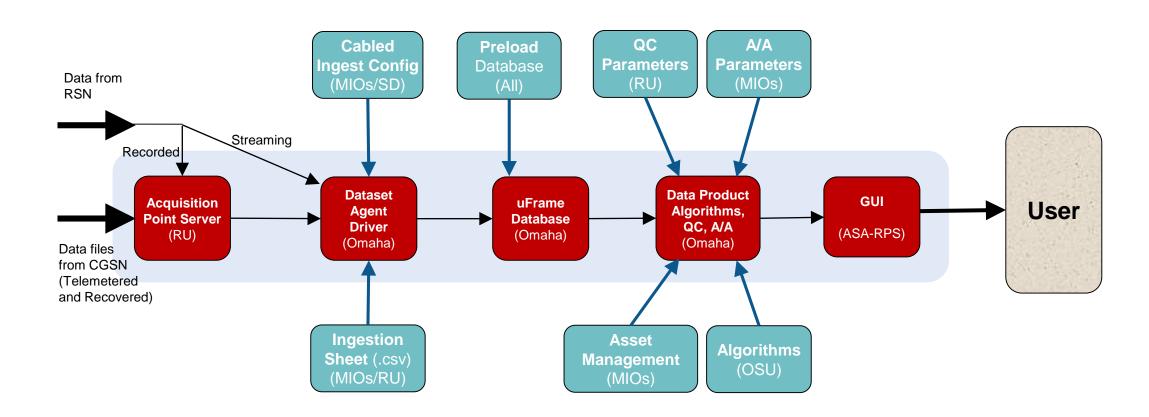
Data products are run through six automated QC algorithms. QC reports are created on a biweekly or monthly basis. Automated QC algorithms were coded based on specifications created by OOI Project Scientists and derived from other observatory experiences. The six algorithms currently implemented are:

- Global Range Test (pdf)
- Generates flags for data points according to whether they fall within universally valid world ocean ranges or instrument limits (whichever is more restrictive)
- Local Range Test (pdf)
 - . Generates flags for data points according to whether they fall within locally valid site-specific or depth ranges
- Spike Test (pdf)
- Generates a flag for individual data values that deviate significantly from surrounding data values
- Gradient Test (pdf)
- . Generates QC flags indicating whether changes between successive data points are remote from a baseline of 'good' data points
- Trend Test (pdf)




OOI Data Flow

Data Flow Example: Pioneer Profiler

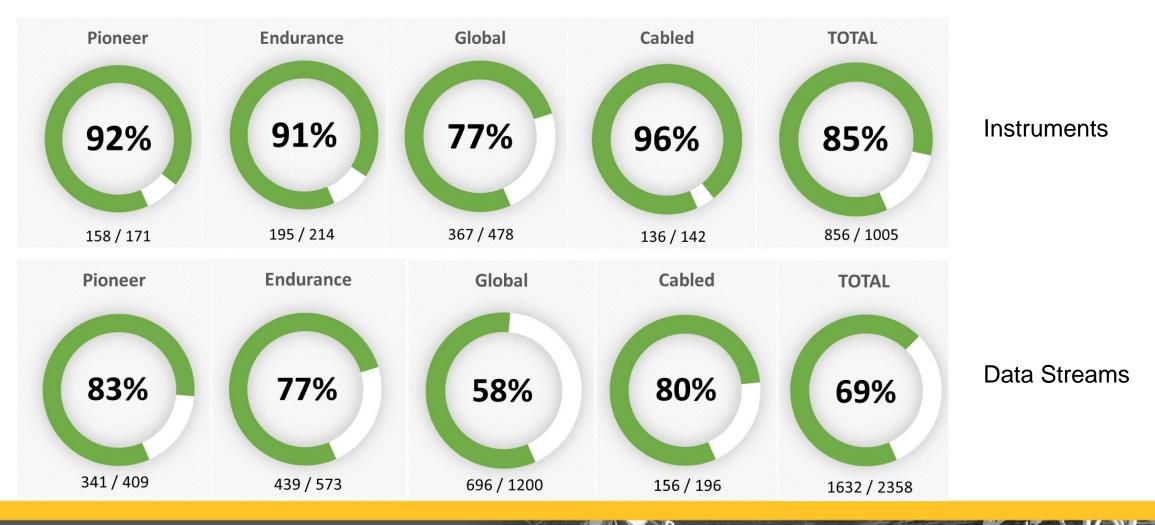


Data Processing Flow

OOI Data Product Levels

- Raw data: The datasets as they are received from the instrument
 - o May contain multiple L0, L1, or L2 parameters, data for multiple sensors, and be in native sensor units
 - Always persisted and archived by the OOI
 - Example: format 0 binary file from an SBE-37IM on a Global Flanking Mooring.
- Level 0 (L0): Unprocessed, parsed data parameter that is in instrument/sensor units and resolution
 - Sensor by sensor (unpacked and/or de-interleaved) and available in OOI supported formats (e.g., NetCDF)
 - Always persisted and archived by the OOI
 - Example: SBE-37IM Temperature portion of the hex string
- Level 1 (L1): Data parameter that has been calibrated and is in scientific units
 - o QC may be applied at this level, utilizing simple automated techniques or human inspection
 - Actions to transform Level 0 to Level 1 data are captured and presented in the metadata of the Level 1 data
 - <u>Example</u>: SBE-37IM Temperature converted from hex to binary and scaled to produce degrees C
- Level 2 (L2): Derived data parameter created via an algorithm that draws on multiple L1 data products
 - o Products may come from the same or from separate instruments
 - <u>Example</u>: SBE-37IM Density and Salinity

Streams vs. Parameters


- Raw data are parsed by system code into data streams (science, engineering, metadata, etc.)
- Each stream is a "package" containing multiple parameters
- A single instrument can produce multiple data streams with many different parameter types within them
- Science parameters are processed (and combined) via additional algorithm code to produce L1 and L2 data products
- If an algorithm uses data streams from multiple instruments to produce L2 products, data from all relevant instruments will be provided during download

Data on Production System

OOI Data Access

Data Access Points

- Data Portal (GUI)
 - Updated with new landing page, navigation, and plotting functionality (including streaming plots)
- ERDDAP (in beta form; Winter 2016)
- M2M Interface (Fall 2016)
- Shipboard Data
 - o Available via Alfresco; currently being updated
- Raw data files
 - Mirror of OOI data repository; data files as they are delivered from instruments
- Direct Pass to community organizations
 - o IRIS
 - IOOS portals; NANOOS, MARACOOS (soon)
 - OceanSITES (soon)

OOI Data

OOI Data Availability

OOI provides free access to a wide range of data collected from around the world's oceans. We are offering these data in phases. We will offer you greater functionality and more data sets in the coming months based on your feedback. All data are safely archived, and our goal is to get them to scientists and educators as quickly as possible using various delivery mechanism as appropriate.

Learn more about the availability of individual data tools...

Increasing the availability of evaluated data and the diversity of delivery modes will continually evolve based on community feedback in the coming months. You can subscribe to a mailing list to received updates and notification as additional data and functionality becomes available. We also look forward to your feedback as well as suggestions on the tools that would increase the efficiency of synthesizing the diverse data collected by the program.

Over 200 unique data products are measured or derived from the over 800 instruments deployed from the air-sea interface to the seafloor amongst the seven OOI arrays.

The OOI CI provides a common operating infrastructure, the OOI system software (OOI Net), to connect and enable the coordination of operations of the OOI marine components (Global, Coastal, and Cabled Arrays) with the scientific and educational pursuits of oceanographic research communities. OOI Net permits 24/7 connectivity to bring sustained ocean observing data to a user any time, any place. Anyone with an internet connection can create a login on OOINet and access OOI data.

DATA PORTAL

The primary source for all OOI datasets and metadata

EXPLORE OOI DATA PRODUCTS

Browse the list of all major data products sampled by the OOI

OOI CRUISE DATA

Access data from all OOI Cruises

Preliminary Data

- · Cabled Array Preliminary Data on IRIS
- Cabled Array tilt meter and co-located temperature plots courtesy of Dr. Bill Chadwick

THREDDS SERVER

Selected pre-calculated streams are available through through OPENDAP and the NetCDF Subset Service on our THREDDS data server

Coming Soon

The following additional data access methods are currently in development and should be available in 2016.

Raw Datafile Access

Home

★ Home Science

★ Status

★ Asset Management

▼

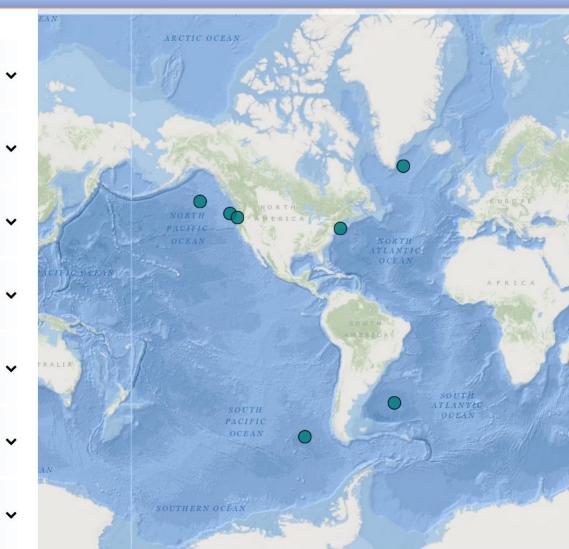
Q Data Catalog Search

■ Glossary ? FAQ

≜ m.vardaro@gmail.com ▼

Research Arrays Select an array on the map or choose from the list.

Station Papa


Pioneer

Argentine Basin

Irminger Sea

Southern Ocean

Cabled Array

OOI Prioritized Datasets

1. All Arrays, all platforms:

- a. CTD data products (Temperature, Conductivity, Pressure, Density, Salinity)
- b. Dissolved Oxygen
- c. ADCP (all series)
- d. Bulk Meteorology (all products)
- e. Surface Wave Spectra significant wave height
- f. Fluorometric Products (CDOM/Chlorophyll/Backscatter)
- g. Nitrate
- h. Seawater pH
- i. In-Water and Air/Sea pCO₂

2. Cabled Array EOVs (these instruments are only on the Cabled Array):

- a. HD Camera Products
- b. Bottom Pressure/Tilt Products
- c. Seafloor Pressure
- d. Low-Frequency Hydrophone Products
- e. Vent Fluid and Particulate DNA Sampler D1000 Temperature Products

ERDDAP Data

- http://ooi-data.marine.rutgers.edu/erddap/tabledap/
- Draft form data are still being loaded to test the system
- Latest 6 months of data available for download, from the available platforms (Endurance, Station Papa, and Cabled)
- Production-level public-facing server hosted at Rutgers CI (Winter 2016)
 - Designed to serve (at least) the latest 6 months of data from all platforms

ERDDAP > tabledap

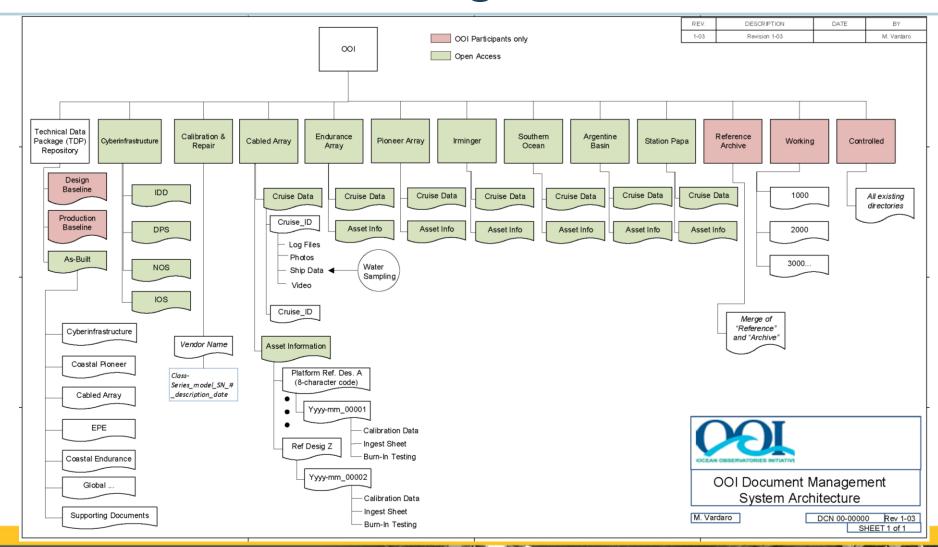
Tabledap lets you use the OPeNDAP constraint/selection protocol to request data subsets, graphs, and maps from tabular datasets (for example, buoy data). For details, see ERDDAP's tabledep Documentation.

List of tabledap Datasets

6 matching datasets, listed in alphabetical ord-

Sub- set	DAP	Make A Graph	M	Data	Title	Sum- mary	FGDC, ISO, Metadata	Back- ground Info	RSS	E mail	Institution		Dataset ID
set	data	graph			* The List of All Active Datasets in this ERDDAP *	0	M	background			Rutgers Univers	0	allDatasets
	data	graph			CE04OSPS-PC01B-4A-CTDPFA109-streamed-ctdpf_optode_sample	0	ELM	background @	N RSS	\bowtie	Ocean Observato	0	CE04OSPS-PC01B-4A-CTDPFA109-streamed-ctdpf_optode_sample
	data	graph			CE04OSPS-PC01B-4C-PC02WA105-streamed-pco2w_a_sami_data_record	0	ELM	background d	RSS RSS		Ocean Observato	0	CE04OSPS-PC01B-4C-PCO2WA105-streamed-pco2w_a_sami_data_record
	data	graph			CE04OSPS-SF01B-2A-CTDPFA107-streamed-ctdpf_sbe43_sample	0	ELM	background d	IN RSS	\bowtie	Ocean Observato	0	CE04OSPS-SF01B-2A-CTDPFA107-streamed-ctdpf_sbe43_sample
	data	graph			CE04OSPS-SF01B-2B-PHSENA108-streamed-phsen_data_record	0	ELM	background @	RSS RSS	\bowtie	Ocean Observato		CE04OSPS-SF01B-2B-PHSENA108-streamed-phsen_data_record
	data	graph			CE04OSPS-SF01B-3A-FLORTD104-streamed-flort_d_data_record	0	ELM	background of	N RSS	\bowtie	Ocean Observato	0	CE04OSPS-SF01B-3A-FLORTD104-streamed-flort_d_data_record
	data	graph			CE04OSPS-SF01B-4A-NUTNRA102-streamed-nutnr_a_sample	0	ELM	background d	M RSS	\bowtie	Ocean Observato		CE04OSPS-SF01B-4A-NUTNRA102-streamed-nutnr_a_sample
	data	graph			CE04OSPS-SF01B-4F-PCO2WA102-streamed-pco2w_a_sami_data_record	0	ELM	background d	R RSS	\bowtie	Ocean Observato		CE04OSPS-SF01B-4F-PCO2WA102-streamed-pco2w_a_sami_data_record
	data	graph			CE04OSSM-RID26-04-VELPTA000-telemetered-velpt_ab_dci_instrument	0	ELM	background d	N RSS	\bowtie	Ocean Observato		CE04OSSM-RID26-04-VELPTA000-telemetered-velpt_ab_dcl_instrument
	data	graph			CE04OSSM-RID26-06-PHSEND000-telemetered-phsen_abcdef_dcl_instrument	0	ELM	background of	R RSS	\bowtie	Ocean Observato	0	CE04OSSM-RID26-06-PHSEND000-telemetered-phsen_abcdef_dcl_instrument
	data	graph			CE04OSSM-RID26-07-NUTNRB000-telemetered-nutnr_b_dcl_conc_instrument	0	ELM	background @	R RSS	\sim	Ocean Observato	0	CE04OSSM-RID26-07-NUTNRB000-telemetered-nutnr_b_dcl_conc_instrument
	data	graph			CE04OSSM-RID27-02-FLORTD000-telemetered-flort_dj_dcl_instrument	0	ELM	background @	N RSS	\bowtie			CE04OSSM-RID27-02-FLORTD000-telemetered-flort_dj_dcl_instrument
	data	graph			CE04OSSM-RID27-03-CTDBPC000-telemetered-ctdbp_cdef_dci_instrument	0	ELM	background d	R RSS	\sim	Ocean Observato	0	CE04OSSM-RID27-03-CTDBPC000-telemetered-ctdbp_cdef_dcl_instrument
	data	graph			CE04OSSM-RID27-04-DOSTAD000-telemetered-dosta_abcdjm_dcl_instrument	0	ELM	background d	N RSS	\bowtie	Ocean Observato	0	CE04OSSM-RID27-04-DOSTAD000-telemetered-dosta_abcdjm_dcl_instrument
	data	graph			CE04OSSM-SBD11-02-HYDGN0000-telemetered-hyd_o_dcl_instrument	0	E L M	background &	RSS RSS	\bowtie	Ocean Observato		CE04OSSM-SBD11-02-HYDGN0000-telemetered-hyd_o_dcl_instrument
	data	graph			CE04OSSM-SBD11-04-VELPTA000-telemetered-velpt_ab_dcl_instrument	0	ELM	background of	R55	\bowtie	Ocean Observato	0	CE04OSSM-SBD11-04-VELPTA000-telemetered-velpt_ab_dcl_instrument
	data	graph			CE04OSSM-SBD11-05-METBKA000-telemetered-metbk_a_dcl_instrument	0	ELM	background #	M RSS		Ocean Observato	0	CE04OSSM-SBD11-06-METBKA000-telemetered-metbk_a_dcl_instrument
	data	graph			CE04OSSM-SBD12-03-HYDGN0000-telemetered-hyd_o_dcl_instrument	0	E L M	background d	RSS RSS	\bowtie	Ocean Observato	0	CE04OSSM-SBD12-03-HYDGN0000-telemetered-hyd_o_dcl_instrument
	data	graph			CE04OSSM-SBD12-04-PC02AA000-telemetered-pco2a_a_dcl_instrument_air	0	ELM	background d?	RSS RSS	\bowtie	Ocean Observato	0	CE04OSSM-SBD12-04-PCO2AA000-telemetered-pco2a_a_dcl_instrument_air
	data	graph			CE04OSSM-SBD12-04-PCO2AA000-telemetered-pco2a_a_dcl_instrument_water	0	ELM	background d	RSS	\bowtie	Ocean Observato	0	CE04OSSM-SBD12-04-PCO2AA000-telemetered-pco2a_a_dcl_instrument_water
	data	graph			CE05MOAS-GL381-01-PARADM000-telemetered-parad_m_glider_instrument	0	E L M	background d	R RSS	\bowtie	Ocean Observato	0	CE05MOAS-GL381-01-PARADM000-telemetered-parad_m_glider_instrument
	data	graph			CE05MOAS-GL381-02-FLORTM000-telemetered-flort_m_glider_instrument	0	E L M	background d	RSS	\bowtie	Ocean Observato		CE05MOAS-GL381-02-FLORTM000-telemetered-flort_m_glider_instrument
	data	graph			CE05MOAS-GL381-04-DOSTAM000-telemetered-dosta_abcdjm_glider_instrument	0	ELM	background @	RSS RSS		Ocean Observato		CE05MOAS-GL381-04-DOSTAM000-telemetered-dosta_abcdjm_glider_instrument
	data	graph			CE05MOAS-GL381-05-CTDGVM000-telemetered-ctdgv_m_glider_instrument	0	ELM	background d	R RSS	\boxtimes	Ocean Observato		CE05MOAS-GL381-05-CTDGVM000-telemetered-ctdgv_m_glider_instrument
	data	graph			CE07SHSM-MFD35-02-PRESFB000-telemetered-presf_abc_dcl_tide_measurement	0	ELM	background d	R RSS	\bowtie	Ocean Observato	0	CE07SHSM-MFD35-02-PRESFB000-telemetered-presf_abc_dcl_tide_measurement
	data	graph			CE07SHSM-MFD35-05-PCO2WB000-telemetered-pco2w_abc_dcl_instrument	0	ELM	background d	M RSS	\bowtie	Ocean Observato	0	CE07SHSM-MFD35-05-PCO2WB000-telemetered-pco2w_abc_dcl_instrument
	data	graph			CE07SHSM-MFD35-05-PCO2WB000-telemetered-pco2w_abc_dcl_instrument_blank	0	ELM	background #	N RSS	\boxtimes	Ocean Observato	0	CE07SHSM-MFD35-05-PCO2WB000-telemetered-pco2w_abc_dcl_instrument_blank
	data	graph			CE07SHSM-MFD35-05-PCO2WB000-telemetered-pco2w_abc_dcl_power	0	ELM	background #	% R55	\bowtie	Ocean Observato	0	CE07SHSM-MFD35-05-PCO2WB000-telemetered-pco2w_abc_dcl_power
	data	graph			CE07SHSM-MFD35-06-PHSEND000-telemetered-phsen_abcdef_dcl_instrument	0	ELM	background d	R RSS	\bowtie	Ocean Observato	0	CE07SHSM-MFD35-06-PHSEND000-telemetered-phsen_abcdef_dcl_instrument
	data	graph			CE07SHSM-MFD37-03-CTDBPC000-telemetered-ctdbp_cdef_dcl_instrument	0	ELM	background d	ST RSS	\bowtie	Ocean Observato	0	CE07SHSM-MFD37-03-CTDBPC000-telemetered-ctdbp_cdef_dcl_instrument
	data	graph			CE07SHSM-MFD37-03-DOSTAD000-telemetered-dosta_abcdjm_ctdbp_dcl_instrument	0	ELM	background dP	N RSS		Ocean Observato	0	CE07SHSM-MFD37-03-DOSTAD000-telemetered-dosta_abcdjm_ctdbp_dcl_instrument
	data	graph			CE07SHSM-RID26-05-PHSEND000-telemetered-phsen_abcdef_dcl_instrument	0	ELM	background d	RSS	\bowtie	Ocean Observato	0	CE07SHSM-RID26-06-PHSEND000-telemetered-phsen_abcdef_dcl_instrument
	data	graph			CE07SHSM-RID26-07-NUTNRB000-telemetered-nutnr_b_dcl_conc_instrument	0	ELM	background d	RES	×	Ocean Observato	0	CE07SHSM-RID26-07-NUTNRB000-telemetered-nutnr_b_dcl_conc_instrument
	data	graph			CE07SHSM-RID27-02-FLORTD000-telemetered-flort_dj_dcl_instrument	0	ELM	background d	RSS RSS	M	Ocean Observato	0	CE07SHSM-RID27-02-FLORTD000-telemetered-flort_dj_dcl_instrument
	data	graph			CE07SHSM-RID27-03-CTDBPC000-telemetered-ctdbp_cdef_dcl_instrument	0	E L M	background d	R RSS	\bowtie	Ocean Observato	0	CE07SHSM-RID27-03-CTDBPC000-telemetered-ctdbp_cdef_dci_instrument
	data	graph			CE07SHSM-RID27-04-DOSTAD000-telemetered-dosta_abcdjm_dcl_instrument	0	ELM	background d	M RSS	\sim	Ocean Observato	0	CE07SHSM-RID27-04-DOSTAD000-telemetered-dosta_abcdjm_dcl_instrument
	data	graph			CE07SHSM-SBD11-01-MOPAK0000-telemetered-mopak_o_dcl_accel	0	ELM	background d	RSS		Ocean Observato	0	CE07SHSM-SBD11-01-MOPAK0000-telemetered-mopak_o_dcl_accel
	data	graph			CE07SHSM-SBD11-02-HYDGN0000-telemetered-hyd_o_dcl_instrument	0	ELM	background d	N RSS		Ocean Observato	0	CE07SHSM-SBD11-02-HYDGN0000-telemetered-hyd_o_dcl_instrument
	data	graph			CE07SHSM-SBD11-04-VELPTA000-telemetered-velpt_ab_dcl_diagnostics	0	ELM	background d	RSS RSS	\bowtie	Ocean Observato	0	CE07SHSM-SBD11-04-VELPTA000-telemetered-velpt_ab_dcl_diagnostics
	data	graph			CE07SHSM-SBD11-04-VELPTA000-telemetered-velpt_ab_dcl_instrument	0	ELM	background #	RSS	M	Ocean Observato	0	CE07SHSM-SBD11-04-VELPTA000-telemetered-velpt_ab_dci_instrument
	data	graph			CE07SHSM-SBD11-06-METBKA000-telemetered-metbk_a_dcl_instrument	0	ELM	background of	₩ RSS		Ocean Observato		CE07SHSM-SBD11-06-METBKA000-telemetered-metbk_a_dcl_instrument
	data	graph			CE07SHSM-SBD11-06-METBKA000-telemetered-metbk_hourly	0	ELM	background d	M R55	\bowtie	Ocean Observato	0	CE07SHSM-SBD11-06-METBKA000-telemetered-metbk_hourly
	data	graph			CE07SHSM-SBD12-03-HYDGN0000-telemetered-hyd_o_dcl_instrument	0	ELM	background #	R RSS	\bowtie	Ocean Observato	0	CE07SHSM-SBD12-03-HYDGN0000-telemetered-hyd_o_dcl_instrument
	data	graph			CE07SHSM-SBD12-04-PCO2AA000-telemetered-pco2a_a_dcl_instrument_air	0	ELM	background 4	N RSS	\bowtie			CE07SHSM-SBD12-04-PCO2AA000-telemetered-pco2a_a_dcl_instrument_air
	data	graph			CE07SHSM-SBD12-04-PCO2AA000-telemetered-pco2a_a_dcl_instrument_water	0	ELM	background d	₹ R55	\bowtie	Ocean Observato	0	CE07SHSM-SBD12-04-PCO2AA000-telemetered-pco2a_a_dcl_instrument_water
	data	graph			CE07SHSM-SBD12-05-WAVSSA000-telemetered-wavss_a_dcl_fourier	0	ELM	background d	® R55				CE07SHSM-SBD12-05-WAVSSA000-telemetered-wavss_a_dcl_fourier
	data	graph			CE07SHSM-SBD12-05-WAVSSA000-telemetered-wavss_a_dcl_mean_directional	0	ELM	background @	M RSS		Ocean Observato	0	CE07SHSM-SBD12-05-WAVSSA000-telemetered-wavss_a_dcl_mean_directional
	data	graph			CE07SHSM-SBD12-05-WAVSSA000-telemetered-wavss_a_dcl_motion	0	ELM	background d	R RSS	24	Ocean Observato	0	CE07SHSM-SBD12-05-WAVSSA000-telemetered-wayss_a_dcl_motion

M2M Interface

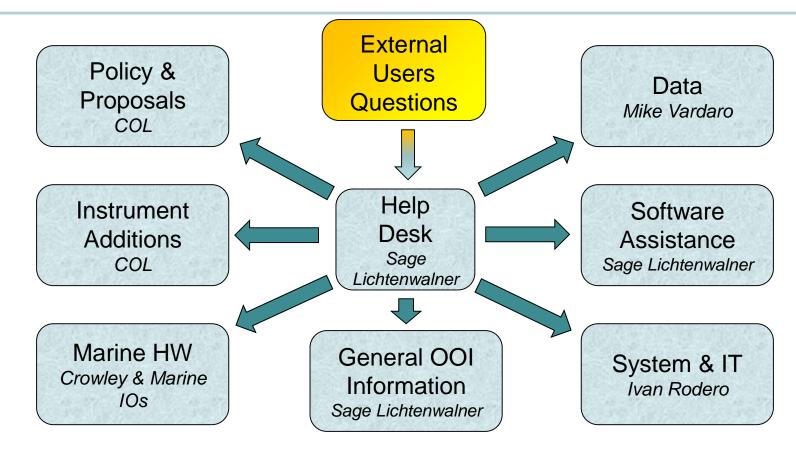

- Machine to Machine, script-based data download
- Use Python script to send properly formatted request to the system (using API username and token), data file is returned
- User requests consist of the rest of the URL and parameters that normally form a uFrame data request
- Data returns are not aggregated, so small, recurring requests are better (this may change)
- Still in testing/feedback phase

Alfresco Document Management

Shipboard Data Types

Data Type	Examples	Source/Format	Purpose	User-Needed Functions
UNOLS Shipboard Instrumentation	Navigation Track Multibeam Data Underway Meteorologic Data (e.g. SST, air temp, humidity, wind speed) ADCP CTD Cast Data (Raw Files) CTD Cast Data (Processed Files) Sailing Orders, Staffing Logs In-line (underway) Cytometer	R2R - or - .pdf, csv file, spreadsheet, native file format (ship tech and scientist upload) ~100 Gb/cruise	Field Verification Support/enable Science Users	Access/Download Plotting in OOINet (?)
Cruise Report	Text Figures Maps E-log ROV dive tracks, ROV Log Instrument Layouts	.pdf for report - and - raw spreadsheets, csv files, high-res figures (scientist upload) ~100 Mb/cruise max	Support/Enable Science Users	Access/Download
Water Samples from CTD Rosette	Salinity (shore-based) Dissolved oxygen (ship- or shore-based) Chl-a fluorescence (ship- or shore-based) Pigment distribution (shore-based) Nitrate + nitrite (shore-based analyses) Full nutrient suite: PO4, NO3, NO2, SIOH4, NH4 (shore-based analyses) Total DIC, total alkalinity (shore-based) pH, spectrophotometric (shore-based)	spreadsheets, csv files, native file format (scientist upload) <100 Mb/cruise max	Calibration Field Verification Support/Enable Science Users	Access/Download Plotting in OOINet (?)
Physical Samples from Seafloor (Water, Gas, Other)	Methane Ethane Hydrogen sulfide Carbon dioxide pH Sediment Cores	spreadsheets, csv files, high-res figures, native file format (scientist upload)	Calibration Field Verification Support/Enable Science Users	Access/Download Plotting in OOINet (?)

Raw Data Access


- Apache server mirroring Rutgers data archive
- HD Video
- Still images
- Seismic Data
- Low-Frequency Hydrophones
- Broadband Hydrophones
- Bioacoustic Sonar

Help Desk Process

- help@oceanobservatories.org
- · Redmine used to track trouble tickets.
- Help desk will be covered by DM and PM in Help Desk absence.

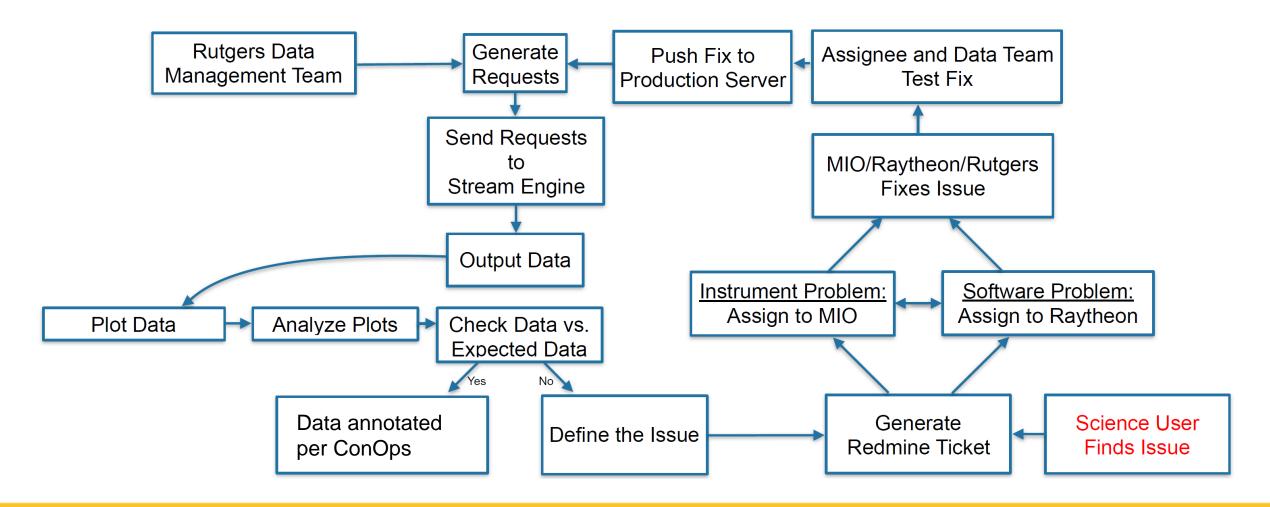


Questions?

- OOI Main Web site: http://oceanobservatories.org
- Data Portal: http://ooinet.oceanobservatories.org

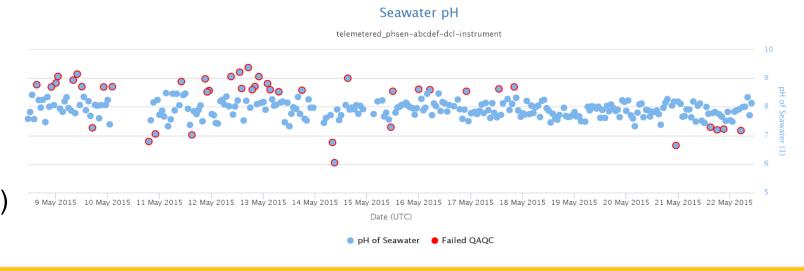
Acknowledgements: NSF, COL, Rutgers University, University of Washington, WHOI, Oregon State University, RPS-ASA, Raytheon, UCSD/SIO

Additional Material



QC Procedures and Tools

Data Evaluation Team QA/QC Testing



OOI Automated QC Procedures

- 7 automated QC algorithms can produce 8 flags (including logical "or" which combines flags) which are plottable and are included in downloaded files
- Coded based on specifications written by OOI Project Scientists, derived from QARTOD manuals and other observatory experiences
- Algorithms refer to "lookup tables" assembled by OOI Project Scientists with input from subject matter experts: https://github.com/ooi-integration/qc-lookup
- 1. Global Range Test
- 2. Local Range Test
- 3. Spike Test
- 4. Stuck Value Test
- 5. Trend Test
- 6. Temporal Gradient Test
- 7. Spatial Gradient Test (Profile)

QC Challenges

- Local range values will require ongoing gathering of environmental data for each platform
- Spike test is currently very simple, and needs tweaking to avoid false positives/negatives (especially in biological data) and to work with certain data types
- Trend test may not work as designed, because it requires the system to compare data prior to the user request date
- Gradient test is complicated to apply, requires 2D dataset
- Not all QC algorithms apply to all data products ongoing review with Project Scientists
- The QC algorithms do NOT trigger alerts in the system
 - Alerts/alarms only trigger when new data is telemetered/streamed
 - Can set alerts on L1/L2 data streams based on Global/Local range values

Progress Since January

- New GUI (faster responses, no terms pop up, more array info, better plotting, better data catalog, asset management improvements)
- Majority of data loaded on production system, downloadable
- Streaming data plotting available
- Raw data access since April
- ERDDAP demo
- M2M nearly ready for release (still needs testing)
- Full database of platforms, instruments, data streams, and parameters created by data team

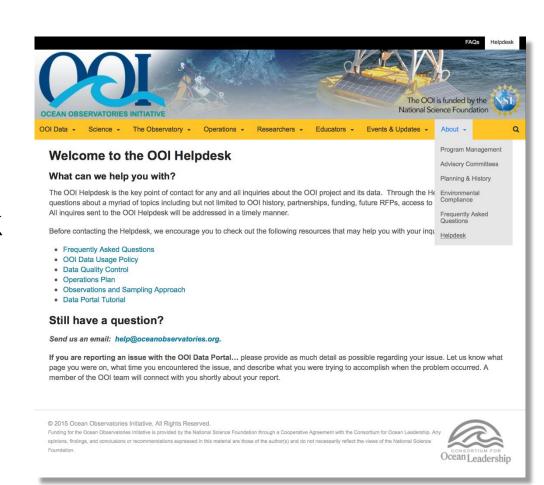
Work to Go

- GUI upgrades needed (better maps, status info, glider page, plotting updates)
- Aggregation of downloaded data files
- Full data ingestion and delivery
- Full Asset Management
- Health and Status information page, Operator Logs, Data Forum
- Implement full QC plan
- Secondary calibration

Lessons Learned

Metadata standards

- Process of defining, collecting, and determining presentation of metadata has been ongoing for longer than anticipated
- Software developers interpreted metadata standards differently than intended by the science requirements
- Climate and Forecast (CF-1.6) standards adopted
- Presentation in NetCDF header is incomplete but being improved
- Provenance delivered in a separate .json file
- More formatting work needs to be done



Communication

- The main method of communication from the data team to users is via annotation (requires enhancement)
- Main method of communication from users to data team is through help desk requests (via website)
- Also needed to standardize and improve communication between data team and Marine Implementing Organization personnel

QA vs. QC

- Quality Control is a product check to identify flaws or defects
- Quality Assurance is a defined process used to diagnose why a product is flawed or being produced incorrectly

The data team has had to become increasingly familiar with the

end-to-end production of data products

- Wider teamwork required to track (sometimes mysterious) issues back to a specific cause
 - o Software error or missing data vs...
 - o Instrument miscalibration by vendor vs...
 - o Instrument settings changed during deployment vs...
 - Mooring run over by ship

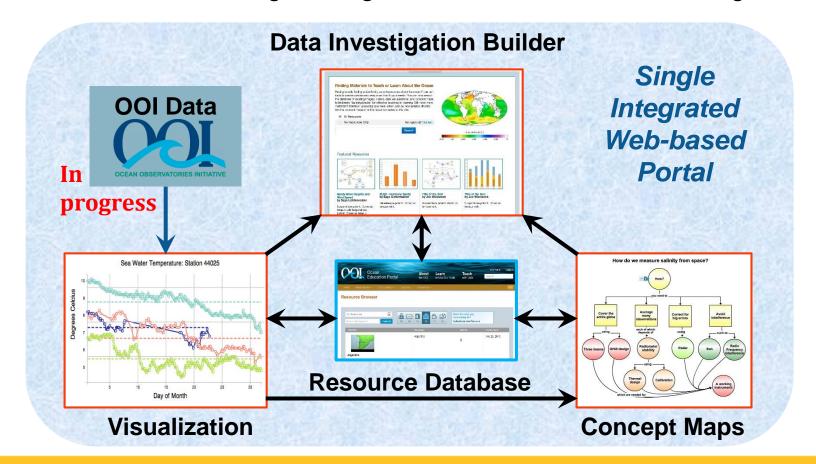
Near-Term Priorities

- Deliver high quality data to the community, enabled and accelerated via feedback and community "eyes" on the products
 - o Requires transparency in software releases, QC procedures, and documentation
- Hybrid data delivery approaches to augment asynchronous data delivery via GUI, using THREDDS, ERDDAP, etc.
- Organize a cross-project team to define and develop a method for post-recovery secondary calibration. This group will rely on external community input.
- Several high value and high interest OOI datasets (e.g. bioacoustics, covariance flux measurements, vent fluid chemistry) will require entraining the external community in data quality and delivery discussions
- Addition of a data forum and additional communications to external scientists
 - o OOI is more then a collection of sensors: an ongoing distributed community discussion

Education and Public Engagement

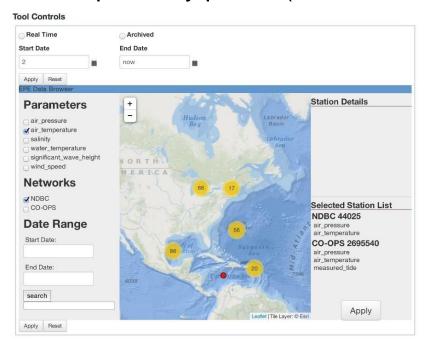
OOI: Education & Public Engagement

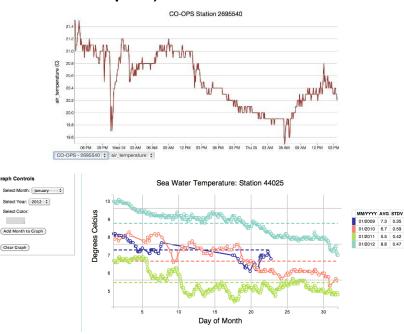
Enabling the Use of Real-Time OOI Data in the Undergraduate Classroom



EPE System Architecture

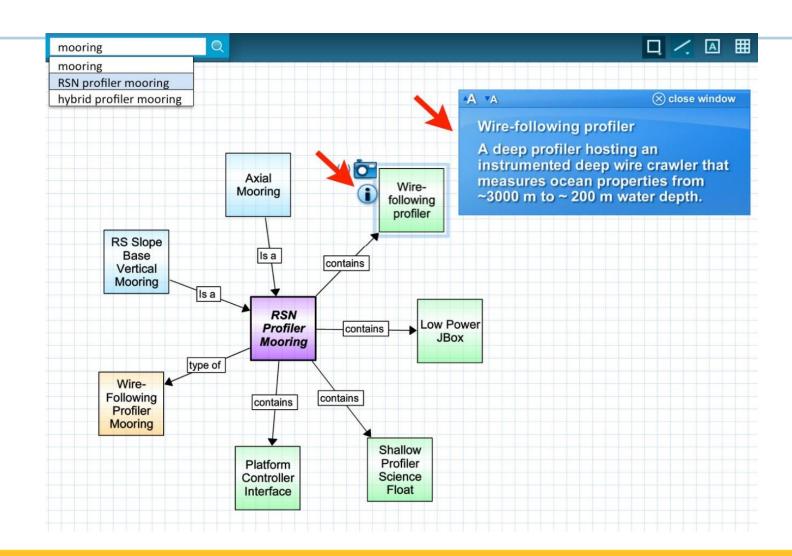
Three primary tools, accessible through a single website, and sharable through a resource database:





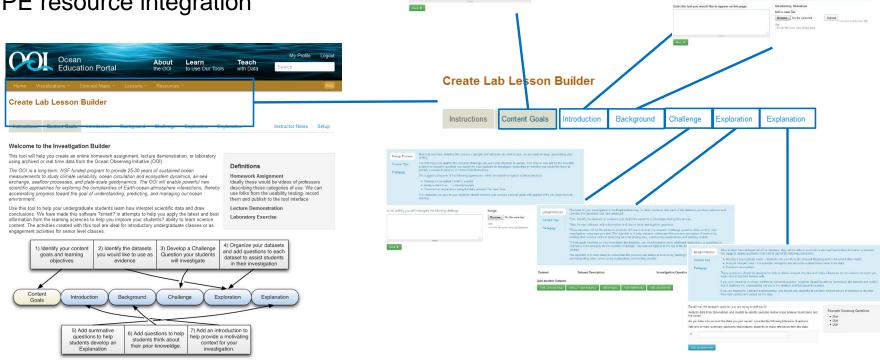
Educational Visualization Service

- Building flexible and customizable visualization tools
- Focused on various time series
- Goal is to balance capability and usefulness
- Multiple entry points (teacher, student, developer)



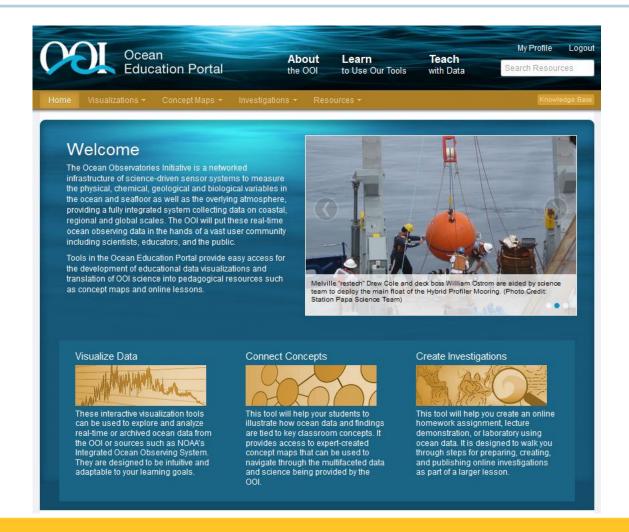
Concept Mapper

- Concept Map Builder (create & edit) and Viewer
- Concept & linking phrase suggestions (ontologies)
- Embedded content
 resources such as
 descriptions, data
 visualizations, photos &
 videos from OOI & outside
 resources



Data Investigation Builder

- Community library of investigations
- Online lesson template
- Investigation Builder Wizard (step by step design process)
- EPE resource integration



Establish your Content Goals

EPE Website: http://education.oceanobservatories.org

Ocean Education Portal

Education Tools

- Concept Map Builder
- Investigation Builder
- Visualization Tools
- Vocabulary Navigator
- Resource Database

