Safety Underground Anthony la chione University of Pittsburgh **Deep Underground Science and Engineering Laboratory (DUSEL)** 2010 NSF Large Facility Workshop May 4-7, 2010 **All Facility Safety Session** 1:30 TO 2:00 PM

Upper Big Branch Disaster (2010)

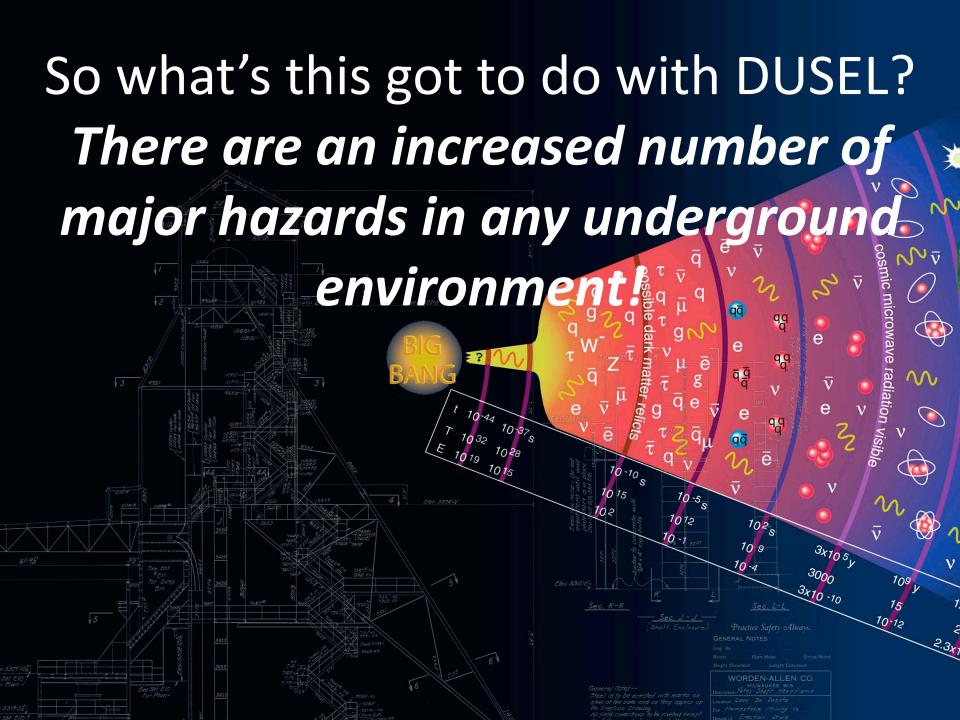
Upper Big Branch Disaster (2010)

- UBB 29 miners fatally injured in an explosion
- Explosion hazards are preventable
- Why are they still occurring

Crandall Canyon Disaster (2007)

Low likelihood of occurrence but high consequence events

Crandall Canyon Disaster (2007)



Why are these disasters occurring?

- Reliance on prescriptive regulations for mine safety standards
- Hazard recognition is not a requirement (poorly defined in standards)
- As a result,
 - Hazards are not being adequately assessed
 - Risks are not being mitigated
- A <u>reactive safety culture</u> currently exist
- A proactive safety culture is needed (more on this later...)
 - <u>Sunshine Mine fire</u> in 1972, 91 miners died in an Idaho hardrock silver mine
 - <u>Belle Isle explosion</u> in 1979, 5 miners died in a Louisiana salt mine

Hazards in the underground environment (Multiple Fatality Events over Last 12 Years)

- Explosions
- Explosives
- Ground falls
- Mobile equipment collisions
- Fires
- Inundations
- Surface subsidence from strata collapse
- Slope or highwall failures
- Drowning
- Asphyxiation

What is DUSEL (Deep Underground Science and Engineering Laboratory)?

- Currently in design with NSF funds
- Sanford Laboratory (SDSTA) currently operates the footprint of the future DUSEL
- Property
 - o 186 surface acres
 - 7,700 underground acres
 - o 370 miles of drifts
 - 14 shafts and winzes

DUSEL's physics mission - WIMPs (weakly-interacting massive particles)

- What is the Universe made of?
- What is Dark Matter?
- What is the origin of the elements in the cosmos?
- What can neutrinos tell us about the matter/antimatter asymmetry?
- Is ordinary matter inherently (un)stable?
- What is the spectrum of neutrinos from supernovae?
- And much more.....

DUSEL's safety goal

To develop an enduring international underground laboratory with a best-in-world class scientific program of research, education and outreach and do so as quickly and as cost efficiently as is consistent with the highest level of safety

- EH&S functions have been developing over the last 2-years
- Rely on the Integrated Safety Management (ISM) approach

What are the construction plans for DUSEL?

- Rehabilitate a small portion of the underground to a depth of approximately 8,000-ft below the surface
- Control the hazards throughout the underground

Current activities (dewatering)

Current activities (exploration)

- Diamond core drilling
- In-situ stress measurements
- Re-entering associated drifts for inspection

Current activities (ventilation)

- Installing barriers
- Maintaining and installing high capacity fans
- Modeling
- Monitoring conditions

Current activities (preparing for early science)

- LUX surface (complete)
- LUX underground
- Majorana underground
- BGE's (on-going)

Current activities (new developments)

- Excavating transitional space
- Rehabilitating shafts
- Adding additional ground support

Future activities underground

- Excavate new drifts
- Excavate at least one large cavity (160-ft wide)
- Rehabilitate shafts

Future activities (science)

- LUX, Majorana, BGE's
- Large experiments with Cryogens

Future activities (Construction of the deep-level campus at the 7,400-ft Level)

- This is a very complex and complicated project!
- We should all be excited about the prospects for conducting "deep science and engineering research"

Lets talk about major hazards

- A <u>hazard</u> is a source of potential harm
- Identify hazards by looking at energies

What are the "Major" Hazards at DUSEL?

- Strata (collapse)
- Gases (explosions)
- Water (inundation & drowning)
- Gravity (falls-from or falling objects)
- Spontaneous combustion (combustible materials)
- Struck-by (mobile equipment)
- Poisonous gases (hydrogen sulfide)
- Electricity (electrocution)
- Fire (Diesel, electrical equipment, etc)
- Cryogens (rapid expansion > asphyxiation)

Assess hazards (Look for big energies)

- Chemical coal, sulfide minerals, gases, fuels, lubricants, degreasers, solvents, paints, etc.
- Electrical high voltage, batteries, etc.
- Gravitational (objects) falling rock, tools, machinery, structures, etc.
- Gravitational (people) falling from or into equipment, structures, ladders, shafts, etc.
- Machine (fixed) powered by electrical, hydraulic, pneumatic, combustion, etc.
- Machine (mobile) haulage trucks, LHDs, locos, tools, etc.

Looking backward at Homestake Mine for answers (from Steve Mitchell's book)

- 270 fatalities from 1876 to 2003 (mine + timber)
- Prior to 1918 ~ 7 to 8 per year
- After 1918 ~ 1 or 2 per year
- 41-pct falls of ground
- 20-pct falls of person
- 14-pct explosives
- 8-pct powered haulage
- 5-pct falling object (other than rock)
- 4-pct struck by (cage, skip, cable, etc)
- 8-pct other (electrocution, asphyxiation, drowning, etc.)

Mining methods (many accidents related to unique work practices)

- Square-set stopes
- Cut-and-fill stopes

Mine safety (a 125-year history of innovation)

- 1911 mine rescue team
- 1916 full-time safety engineer
- 1923 safety bonus system (300 shift accident free-\$10)
- 1931 mine rescue team equipped with McCaa selfcontained breathing apparatus
- 1953 USBM training, stench warning system, Central Safety Committee and Workmen's Safety Committee
- 1954 safety glasses mandatory

Major hazards were not being adequately addressed

- Some past work processes represent a significant risk for the project (17 fatalities at Homestake Mine between 1977 and 1994)
 - Hoist conveyance issues
 - Shaft rehabilitation issues
 - Drilling, blasting, mucking and installation of support issues

Risk and potential unwanted events

- A <u>risk</u> is the chance of something happening that will have a negative impact on objectives
 - A situation or condition releases a hazard
 - This unwanted energy release causes an incident, or worse, an accident
- Look for potential unwanted events

Risk = Probability of occurrence X Consequence of outcome

Need to focus on major hazards

<u>Common perception</u> – by reducing near misses and minor injuries, serious injuries and fatalities will also be reduced

<u>Statistics</u> <u>demonstrate</u> – a reduction in near misses and minor injuries is not always associated with a reduction in the occurrence of fatal injuries

Implication – major hazards need to be addressed directly

Major hazard risk assessment is a fundamental requirement for DUSEL?

- Understand Potential Loss what consequence types?
- Examine Potential Energies what sources of harm?
- Review <u>Existing Controls</u> and Investigate <u>New Ideas</u> for Control (additional ways to reduce risk?)

Remember -- Not all controls are equal

Control Category	Major Control Issue	Risk Reduction Effectiveness	Potential for Human Error
Eliminate Hazard	Organizational	Complete	Doesn't exist
Minimize Hazard	Engineering	High	Human error plays a minor
Physical Barriers			role
Warning Devices	Assessing	Medium	Human error is possible
Procedures	Work process	Low	Human error
Personnel			can play an
Skills and			important role
Training			

In reality most organizations use controls with reduced effectiveness (from NIOSH field data)

Questions to answer

- Was the threat or hazards identified and understood?
- What were the controls that were supposed to prevent the incident?
- Why didn't they work as intended?

Only if threats and hazards are understood can controls be properly determined and their effectiveness evaluated

Utilize incident investigations

- Identify root cause
- Determine why controls didn't work
- Determine actionable outcomes that correct organizational issues

"Focus on the Right Things"

- Set clear direction to solve specific high risk problems
- Focuses on priority concerns and conditions undergoing change
- Gets involvement and commitment from a wide crosssection of the operation's work force
- Decrease potential losses associated with risky work processes
- Build teams to mitigate major hazards
- Audits and review to provide assurances to management that the controls are being applied to some operational standard
- Go beyond simply complying with existing standards and regulations

The Hudson Model – It's a Journey

- Develop a proactive safety culture
- Integrate safety programs into all aspects of the organization
- Develop a self-regulating philosophy where work processes utilize <u>leading</u> practices