# TSUNAMI PROCESSES: REFLECTIONS AND PROSPECTS FROM SUMATRA AND OTHER EVENTS

**Emile A. OKAL** 

Department of Geological Sciences Northwestern University Evanston, IL 60208

emile@earth.northwestern.edu

Woods Hole Oceanographic Institution 30 October 2006

# **TSUNAMI GENERATION**

# EARTHQUAKE

Deforms ocean bottom / Excites tsunami mode Fast; Small motion over large areas

# LANDSLIDE

Perturbs/destroys ocean bottom Slow; Large motion over small areas

*Documented:* Nfld., 1929; Makran, 1945; Unimak, 1946; Fiji, 1953; Algeria, 1954, 1980; Amorgos, 1956; Skagway, 1994; PNG, 1998; Storrega, –7000.

 $\rightarrow$  Reproducible in Laboratory

#### **VOLCANIC EXPLOSION**

Documented: Krakatoa, 1883; Santorini, -1650.

#### **BOLIDE IMPACT**

Speculated: Chicxulub, (K/T)

#### **EARTHQUAKE SCALING LAWS**

Simple ideas:

• An earthquake source must grow both in space and time

\* An enlarged slip,  $\Delta u$  requires a larger fault length *L* (the *strain* released  $\varepsilon$  must remain constant)

\* A larger source must take a longer source or rupture time (Fault motion and rupture propagation involve constant speeds).

 $\rightarrow$  Thus, an earthquake must follow *SCALING LAWS* and might be well represented by a *SINGLE SCALAR*, its

SEISMIC MOMENT, M<sub>0</sub>.

$$M_0 = \mu S \Delta u \sim L^3$$

Scaling laws may explain population statistics, such as frequency-size relations, useful to predict the occurrence of [large] events... although they are expected to break down at large moments.



*LANDSLIDES* may follow comparable (less well-known) SCALING LAWS, but with obviously different invariants.

#### SCALING TSUNAMIS in the NEAR FIELD

#### Okal and Synolakis [2004]

- **SIMPLE IDEAS:** Consider a seismic source
- $\rightarrow$  Everything else being equal, the maximum value of run-up on a beach should grow like the slip,  $\Delta u$ .
- $\rightarrow$  Everything else being equal, the lateral extent of run-up on the beach should grow like the size of the fault, *L*.
- → The ratio of the two, which is the *aspect ratio* of the distribution of run-up along the beach, should behave like  $\Delta u / L$ , which being the strain released,  $\varepsilon$ , should be invariant under seismic scaling laws.
- Thus we predict that all earthquakes should feature the *same distribution of run-up along a beach in the near field*.
- $\rightarrow$  TEST this theoretically.
- $\rightarrow$  COMPARE with data from tsunami surveys.
- If this invariant is violated, it means the source does not scale like an earthquake.

It probably is not one !

[LANDSLIDE ?]

### **NEAR-FIELD:** The Earthquake Dislocation

#### • Compute Ocean-Bottom Deformation due to Dislocation



Simulate Tsunami Propagation to Beach and Run-up



- Retain aspect ratio I = b/a
- Vary source parameters: *I* no greater than  $2.3 \times 10^{-5}$ .

## In the near field, invariants $I_1$ and $I_2$ effectively separate earthquakes and landslides

34 DISLOCATIONS -- 36 DIPOLES -- 9 SURVEYS



ASPECT RATIO OF RUN-UP DISTRIBUTION ALONG BEACH

[Okal and Synolakis, 2004]

# **ALEUTIAN 1946: NEAR FIELD**

Near-field *Aspect Ratio* of Run-up Distribution at Unimak  $(6.4 \times 10^{-4})$  even larger than for PNG-1998, thus

REQUIRING LANDSLIDE SOURCE





# 2. NEAR-FIELD RUN-UP : WELL EXPLAINED by DISLOCATION

(No need to invoke major landslides)



[R. Davis, AusAID]

As high as these run-up values may seem, they fall within the so-called *"Plafker Rule of Thumb"* 

MAX RUN-UP  $< 2 * \Delta u$ 

{Justified theoretically by *Okal and Synolakis* [2004]} For Sumatra,  $\Delta u \approx 20$  m



#### **MODELING LANDSLIDE SOURCES**

• Motivation: PNG, 1998, but suggested as early as *Gutenberg* [1939].

#### WHAT IS DIFFERENT ?

- Moving much smaller masses

   Landslide: max. recorded 30 km; suggested 100 km
   (Earthquake: up to 1000 km)
- Moving over much greater distances Horizontally tens of km (Earthquake: at most 25 m)
- \* Physical process at extremity of rupture different Earthquake: Cohesive; continuous Landslide: Cohesion of material broken.
- \* Much slower process:

Landslide: Maximum observed velocity: 40 m/s (suggested 70 m/s) Always very slow with respect to tsunami (220 m/s)

Earthquake Rupture: 3.5 km/s; Even for "slow" earthquake,  $v \ge 1$  km/s; remains HYPERSONIC with respect to tsunami.

#### **PHYSICAL REPRESENTATION of LANDSLIDE**

- Landslide modeled as *SINGLE FORCE* representing reaction by Earth to acceleration of sliding body. [*Hasegawa and Kanamori*, 1987]
- \* Always nearly horizontal
- \* Zero impulse condition on Earth requires

 $\int_{-\infty}^{+\infty} F(t) \cdot dt = 0$ 





\* Contrast with Seismic Moment for earthquake source

$$M(t) = \mu S \Delta u(t) \approx M_0 \cdot H(t)$$



# **COMPARISON OF SPECTRAL AMPLITUDES**

#### (Rayleigh and Tsunami)

Landslide excitation, [ $\mathbf{f} \cdot \mathbf{u}$ ], proportional to displacement, should be INTEGRAL of Earthquake excitation, [ $M : \varepsilon$ ], proportional to strain.

 $\rightarrow$  **BUT**, Source Time Function of Landslide is

SECOND DERIVATIVE of Earthquake Counterpart.

# • Excitation by LANDSLIDE (SINGLE -FORCE) is DERIVATIVE of that by EARTHQUAKE (DOUBLE-COUPLE).

# EARTHQUAKE LANDSLIDE



RATIO

#### Note:

- Landslide Excitation Deficient by 1.5 orders of magnitude
- Landslide tsunami is

Higher-Frequency,

**HENCE DISPERSIVE** 

# ALGORITHMS are UNFIT to MEASURE LARGE EARTHQUAKES

## EARTHQUAKES TAKE TIME TO OCCUR

- The larger the earthquake, the longer the source ("Scaling Law").
- Measuring large earthquakes at small periods simply misses their true size.
- In the case of Sumatra, full size available only from normal modes.
- Measuring small earthquakes at long periods simply processes noise.



# **PROBLEMS** with MANTLE WAVES (CMT; $M_m$ )

2004 SUMATRA HARVARD CMT INVERSION

(T boosted to 300 s)

Use automated process to invert 202 seismograms at 73 stations and retrieve best-fitting *POINT SOURCE* (in space and time).

Solution posted 05:25 GMT 26-DEC-2005, 4.5 hours after the event.



**Even with an inversion at** T = 300 s, the much longer source is drastically UNDERESTIMATED

#### **PROBLEM with BODY-WAVE TECHNIQUES** for VERY LARGE EVENTS

• The duration of the source (and hence of the *P*-wave train may be so long that the *P* wave interferes with subsequent phases (*PP*, even *S*)

Example: Sumatra-Andaman Event, 26 DEC 2004

**Station MSEY (Mahé, Seychelles;**  $\Delta = 41^{\circ}$ **).** 

Duration of Source: 500 to 600 seconds (8 to 10 minutes) 500 seconds



# **IMPROVED ALGORITHMS to EXPLORE** SUMATRA SOURCE

1. Composite CMT inversion [Tsai et al., 2005]



130°

135°

140°

145°

## **Q.:** Is it necessary (and hence worth) to resolve

# **SOURCE DETAILS**

# for FAR-FIELD TSUNAMI WARNING ?

**A.:** *MAYBE NOT !!!* 

#### 1. MOVE SOURCE

## LATERALLY







0.05 0.10 0.20 0.30 0.40 0.50 1.00 2.00 3.00 5.00 AMPLITUDE (m)

#### 2. CHANGE SOURCE PARAMETERS



#### Depth

SUMATRA 2004; D = 20 km (before RUNUP)

#### Fault Dip

SUMATRA 2004 Dip = 12 deg. (before RUNUP)

#### Strain Released





SUMATRA 2004 Large Strain (before RUNUP)





# *By CONTRAST, WATER DEPTH at the SOURCE PLAYS a CRUCIAL ROLE NOTE:* This explains the much smaller tsunami during the 2005 Nias earthquake

UNPERTURBED EPICENTRAL BATHYMETRY EPICENTRAL BATHYMETRY DIVIDED BY 4.0



#### $\Sigma m_b$ : A new, promising development

[Bormann and Wylegalla, 2005]

• Idea: Make standard measurements of  $m_b$  but keep adding their contributions throughout the *P* wavetrain, as long as enough energy is present.



Fig. 1. Vertical component velocity-proportional broadband record at the Berlin seismic station  $RUE (D = 82.5^{\circ})$  of the P-wave group generated by the Sumatra earthquake of 26 December 2004. The times of the P and PP first arrivals have been marked. Numbered are the analyzed amplitudes originating from sub-events of the long progressing multiple rupture process.

- Seems to work fine, even for large earthquakes
- Drawbacks: Operational aspects of algorithm still largely *ad hoc*.

Lacks theoretical justification.

Same problems as  $\Theta$ ,  $M_{wp}$  (duration of window).



Fig. 2. Cumulative broadband body wave magnitude  $\Sigma m_B$  as a function of time t in seconds after the first onset for the whole P-wave group of the Sumatra earthquake of 26 December 2004.

• Sumatra, 28 March 2005:  $M_w = 8.6$ ,  $M_e = 8.5, \Sigma m_B = 8.6$ • Hokkaido, 25 September 2003:  $M_w = 8.3$ ,  $\Sigma m_B = 8.4$ • Alaska, 3 November 2002:  $M_w = 7.9$ ,  $M_s = 8.5, \Sigma m_B = 8.4$ • Peru, 23 June 2001:  $M_w = 8.4, \Sigma m_B = 8.4$ .

# A simple [trivial ?], robust measurement [*Ni et al.*, 2005]

• Duration of source from High-Frequency (2–4 Hz) Teleseismic *P* wavetrain



t = 559 s

# **DEVELOP ALGORITHM TO MEASURE HIGH-FREQUENCY P-WAVE DURATION**

## TONGA, 3 May 2006 — Charter Towers (CTA)

 $\Delta = 37^{\circ}$ 



## **PRELIMINARY DATASET** $(\tau_{1/3})$

52 earthquakes; 1072 records

 $\rightarrow$  2004 Sumatra event recognized as very long ( $\tau_{1/3}$  = 167 s;  $\tau_{1/4}$  = 291 s)

→ "Tsunami Earthquakes" (Nicaragua 1992; Java 2006) also identified.



## MODELING OF REAL-TIME GPS COULD PROVIDE QUICK ESTIMATE of SEISMIC MOMENT

[Blewitt et al., submitted, rejected, resubmitted, 2006]



Fit Horizontal GPS data to various source models

Red: 10 mn Green: 15 mn

Blue: 20 mn



Zooming in on close-by stations...



# **INFRA SOUND ARRAYS (CTBT)**

Arrays of barographs monitoring pressure disturbances carried by atmosphere.

(Deployed as part of International Monitoring System of CTBT.)



BEAM ARRAY to determine azimuth of arrival and velocity of air wave.

**USE TIMING** of arrival to infer source of disturbance as *TSUNAMI HITTING CONTINENT* then continent shaking atmosphere.



#### **TSUNAMI recorded by HYDROPHONES of the CTBTO**

(hanging in ocean at 1300 m depth off Diego Garcia)

 $\rightarrow$  Instruments are severely filtered at infra-acoustic frequencies.



TIME (hh:mm)



Note first ever observation of DISPERSION of tsunami branch at VERY HIGH [tsunami] frequencies in the far field

 $\omega^2 = g \, k \, \cdot \, \tanh \left( k \, h \right)$ 

All of this on the high seas, unaffected by coastal response.

#### **Retrieving Seismic Moment from High-Frequency Tsunami Branch**

- Use Hydrophone H08S1 from IMS at Diego-Garcia (BIOT)
- Deconvolve instrument and retrieve pressure spectrum



 $P(\omega) = 0.35 \text{ MPa} * \text{s} \text{ at } 87 \text{ s}$ 

Use *Okal* [1982; 2003; 2006] to convert overpressure at 1300 m depth to surface amplitude η,
 *outside classical Shallow-Water Approximation*.

Find  $\eta(\omega) = 78000 \text{ cm}^*\text{s}$  at T = 87 s.

• Use *Haskell* [1952], *Kanamori and Cipar* [1974], *Ward* [1980], *Okal* [1988; 2003] in normal mode formalism to compute excitation coefficients.

Find  $M_0 = 8 \times 10^{29}$  dyn – cm

#### ACCEPTABLE !

(Moment from Earth's free oscillations: 1 to  $1.2 \times 10^{30}$  dyn-cm) [*Stein and Okal*, 2005; *Nettles et al.*, 2005]

## LONG-PERIOD ( $T \approx 3000$ s) TSUNAMI ALSO RECORDED BY DIEGO GARCIA HYDROPHONES

- However, such periods are 30,000 times the corner of the filter and the response of the instrument is expected to be down by  $\approx 5 \times 10^8$ , to the extent that digital noise strongly affects the spectrum.
- $\rightarrow$  IT DOES NOT APPEAR POSSIBLE TO FURTHER INTERPRET THESE SIGNALS QUANTITATIVELY.

# HYDROPHONES DESIGNED *WITHOUT HIGH – PASS FILTERS* COULD BE VALUABLE TSUNAMI DETECTORS



# HIGH-FREQUENCY COMPONENTS of the TSUNAMI WAVE and HAZARD to HARBOR ENVIRONMENTS

- In at least three harbors of the Western Indian Ocean where the tsunami was otherwise benign, large vessels broke their moorings and drifted for several hours inside port facilities.
- Miraculously, this led to no casualties and only minor damage to ships and infrastructure.
- In two instances, this happened *SEVERAL HOURS AFTER* the arrival of the main tsunami waves.
- This has severe consequences for Civil Defense in harbor environments, especially with respect to the sensitive issue of the *"all clear"* after an alert.
- → It may be due to the resonant oscillation of the harbors excited by the shorter components of the tsunami wave, delayed by the dispersion of their group velocity outside the limits of the shallow-water approximation.



 $\rightarrow$  The study of this part of the tsunami spectrum should become a priority.

### **TOAMASINA**, Madagascar

*(a)* 









Figure 5. (a): The 50-m freighter Soavina III photographed on 2 August 2005 in the port of Toamasina. (b): Sketch of the port of Toamasina showing its complex geometry. (c): Captain Injona uses a wall map of the port (ESE at top) to describe the path of Soavina III from her berth in Channel 3B (pointed on map), where she broke her moorings around 7 p.m., wandering in the channels up to the location of the red dot (also shown on Frame b), before eventually grounding in front of the Water-Sports Club Beach (white dot; Site 17).

50-m SHIP BROKE MOORINGS around 19:00 (GMT+3), FOUR HOURS AFTER MAXIMUM WAVES

#### **Preliminary modeling for Toamasina [Tamatave], Madagascar**

[D.R. MacAyeal, pers. comm., 2006]

٠

- Finite element modeling of the oscillations of the port of Toamasina reveals a fundamental mode of oscillation at T = 105 s, characterized by sloshing back and forth of water into the interior of the harbor, thus creating strong *currents* at the berth of *Soavina III*.
- At this period, the group velocity of the tsunami wave is found to be **97 m/s** for an average ocean depth of 4 km.
- This would correspond to an arrival at 16:55 GMT, or 19:55 Local Time.
- This is in good agreement with the Port Captain's testimony

"After 7 p.m. and lasting several hours"



T = 105 seconds



## **TSUNAMI RECORDED ON SEISMOMETERS**

 Recording by shoreline stations is WORLDWIDE

including in regions requiring strong refraction around continents (Bermuda, Scott Base).





Hope, South Georgia, 13100 km



#### **USING AN ISLAND SEISMOMETER AS A "DART" SENSOR?**

*Example: Ile Amsterdam, 26 DEC 2004 (d= 5800 km)* 

Б

- A horizontal seismometer at a shoreline location can record a tsunami wave.
- Once the instrument is deconvolved, we obtain an apparent horizontal ground motion of the ocean floor
- Further deconvolve the "Gilbert Response Factor"  $[l y_3^{app} / \eta]$  and obtain the time series of the surface amplitude of the tsunami.
- The *G R F* can be computed from normal modes Gilbert Response:  $\begin{bmatrix} l & y_3^{app} \neq \eta \end{bmatrix}$





Deconvolve Instrument: Apparent Ground Motion







## **TSUNAMI RECORDED on ICEBERGS**

Since 2003, we have operated seismic stations on detached and nascent icebergs adjoining the Ross Sea.

The tsunami was recorded by our 3 seismic stations, on all 3 components, with amplitudes of 10–20 cm.



## Seismic recordings of 2004 Sumatra Tsunami Nascent (NIB); 26 DECEMBER 2004



# **ELLIPTICITY of TSUNAMI SURFACE MOTION**

(Shallow Water Approximation)

$$\frac{u_x}{u_z} = \frac{1}{\omega} \sqrt{\frac{g}{h}} = \text{typically} = 10 \text{ to } 30$$

Sumatra 2004:  $u_z \approx 1 \text{ m}$  (JASON; seismic stations)

 $u_x \approx 15$  meters ?

Conceivable to use GPS-equipped ships to detect tsunami.



Ship A should see a perturbation in speedShip B would show a zig-zag in trajectory

#### NORMAL MODE FORMALISM: A different approach

[Ward, 1980]

- At very long periods (typically 15 to 54 minutes), the Earth, because of its finite size, can ring like a bell.
- Such *FREE OSCILLATIONS* are equivalent to the superposition of two progressive waves travelling in opposite directions along the surface of the Earth.



*Ward* [1980] has shown that **Tsunamis come naturally as a special branch of the normal modes of the Earth,** provided it is bounded by an ocean, and gravity is included in the formulation of its vibrations.

## **EIGENFUNCTIONS of SPHEROIDAL MODES**



**TSUNAMI EIGENFUNCTION is CONTINUED (SMALL) into SOLID EARTH**