Tsunami Warning System Challenges

Woods Hole Oceanographic Institute

October 30, 2006 Paul Whitmore NOAA/NWS/West Coast-Alaska Tsunami Warning Center

Tsunami Warning Philosophy

The PRIME directive:

Get the warning out prior to wave impact on the coast!!!

- But wait... the phenomena can't be observed prior to impact on the nearest coasts.
- OK... issue the warning based on associated phenomena (i.e., seismic recordings)

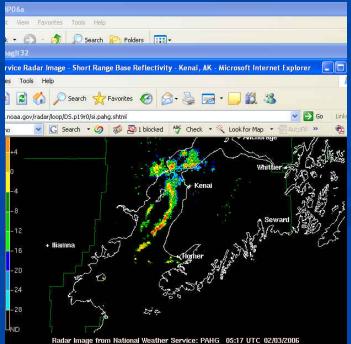
The PROBLEM:

There is not a one-to-one correspondence between seismic recordings and tsunami generation

The RESULT:

 Tsunami warnings occasionally get issued with no resulting impact

Tsunami Warning Philosophy


The HOPE:

Be able to observe the phenomena directly prior to first impact

The REALITY:

- A denser DART network and forecasting tools will allow us to estimate danger prior to impact for distant tsunamis
- The DART network and an improved tide gage network will allow faster warning cancellations for regional events
- We are not able to verify the wave prior to impact near source and will not be able to in the near future.
 PDGE

Tsunami Warning System

Three basic components: The Warning Center Acquires observational data Processes the data Makes decisions based on observations and protocols Disseminates warnings Communication systems which carry warnings to emergency management officials and the public NOAA Weather Wire NOAA Weather Radio/Emergency Alert System ■ Etc. Emergency Management Infrastructure Prepares itself and local populations for events Transmits warnings to public Conducts evacuations

Tsunami Warning System

Two associated components:

Research

- Enhances the capabilities of the warning system
- Provides emergency management best estimation of the tsunami hazard zone
- Public Education
 - Alert coastal populations and visitors of their hazard and proper response to both official warnings and nature's warnings

WC/ATWC Area-of-Responsibility

WC/ATWC AOR

Western:

- California
- Oregon
- Washington
- British Columbia
- Alaska

Eastern

- U.S. Gulf of Mexico coast
- U.S. Atlantic coast
- Eastern Canada

PTWC AOR:

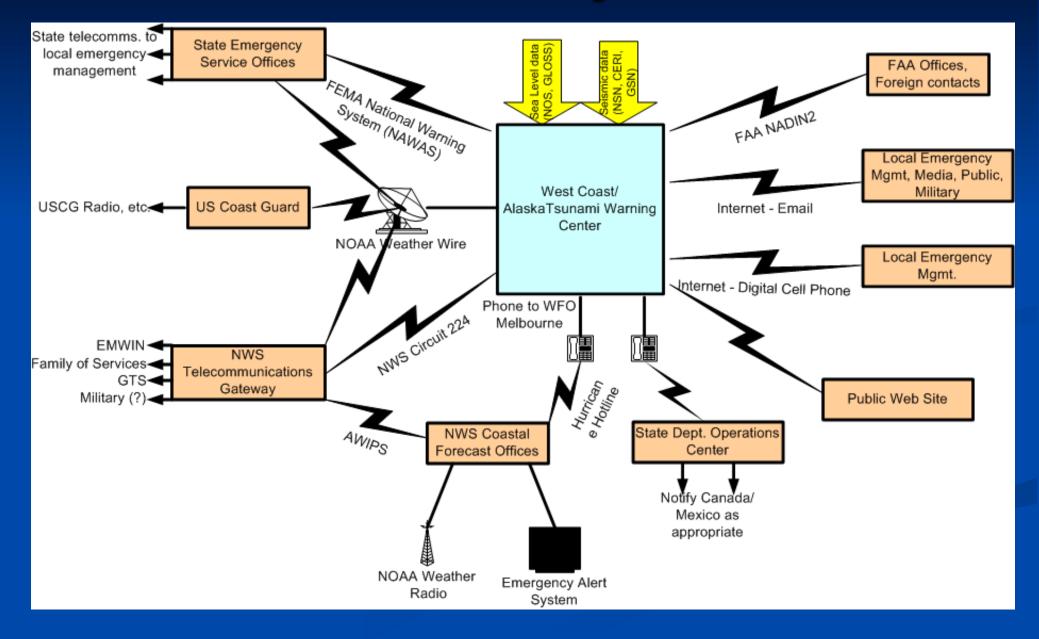
- Hawaii
- Pacific outside WCATWC AOR
- Interim Puerto Rico/VI/Caribbean
- Interim Indian O.

WC/ATWC Staff

15 staff

- Director
- TWSO
- 5 Sr. Watchstanders
- 4 Watchstanders
 - Oceanography
 - Geophysics
 - Physical Science
- 1 ITO
- 1 Senior ET
- 1 ET
- Secretary

Center staffed 24x7 with 2 staff.

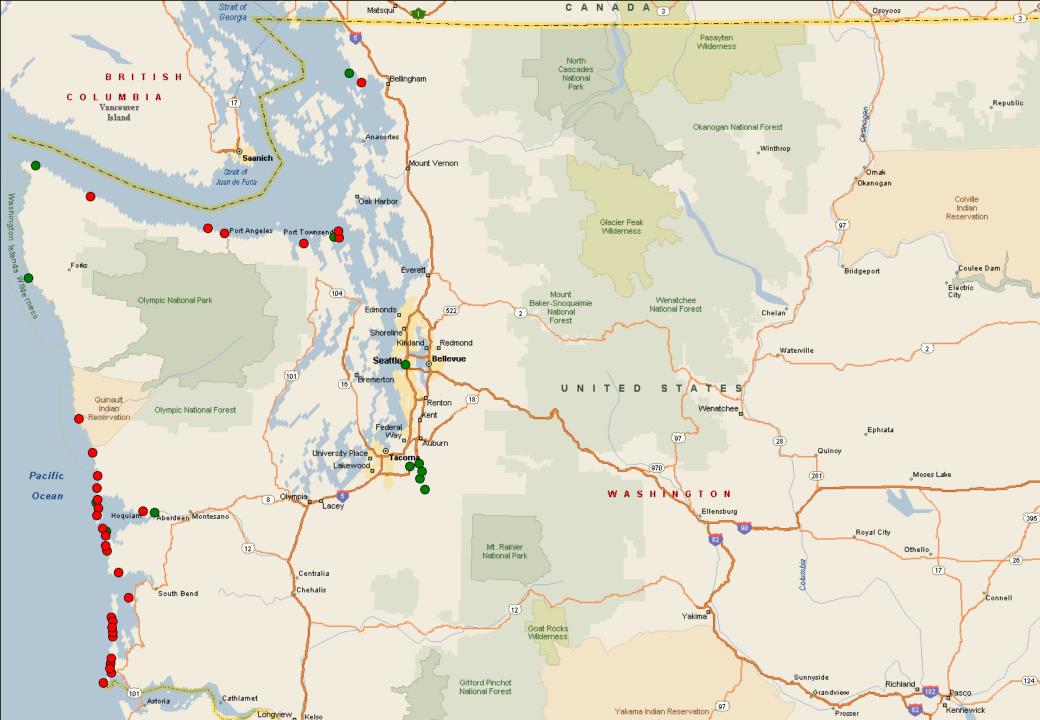

Tsunami Warning Center Core Functions

Acquire raw data:

- Seismic data
- Sea level data
- Process and analyze data:
 - Initial processing on seismic data
 - Decision's based on processed data and protocols
 - Post-processing seismic data
 - Display sea level data
 - Analyze sea level data in conjunction with pre-event modeling and historical information
- Disseminate Information

Networks and Example Scenario

Product Delivery Methods



Tsunami Strengthening Program: TWC Enhancements

- Enhanced DART network (NDBC)
- Enhanced tide gage network (NOS)
- Upgrade PTWC seismic network
- Modernized forecast software (PMEL)
- TsunamiReady support (NWS)
- Global seismic network upgrade (USGS)
- Tsunami Archives (NGDC)
- 24x7 warning centers (TWCs)

Warning System Challenges

- Need direct wave observations PRIOR to impact on nearest coast
- Hazard definition in areas with little historic data
- Warning dissemination to those at risk
- Infrequency of events and associated complacency
- Poorly tsunami-educated public

