The Practical Application of Hybrid Technology in the Marine Industry

ASPIN KEMP & ASSOCIATES

CANADA · USA · SINGAPORE

Aspin Kemp & Associates (AKA)

AKA - OWEN SOUND, ONTARIO

AKA - PRINCE EDWARD ISLAND

AKA Operations

Hybrid Projects

Marine Hybrid Reality

Patents Have Been Granted!

(12) United States Patent Barrett et al.

(10) Patent No.: US 8,062,081 B2 (45) Date of Patent: Nov. 22, 2011

(54) HYBRID PROPULSION SYSTEMS

(75) Inventors: John Barrett, Leavenworth, WA (US); Elizabeth Boyd (nee Reynolds), Seattle,

WA (US); Tim Stewart, Longview, WA (US); Rick McKenna, Seattle, WA (US); Jason Aspin, Charlottetown (CA); John Eldridge, Chamcook (CA); Paul Jamer,

Fall River (CA); John Stratton, Bedford (CA); Chris Wright, Collingwood (CA)

6,064,161 A 5/2000 Takahara et al. 6,150,776 A 11/2000 Potter et al. 6,170,587 B1 1/2001 Bullock 6,619,223 B2 9/2003 Beato (Continued)

FOREIGN PATENT DOCUMENTS

2 290 281 A 12/1995 (Continued)

GB

OTHER PUBLICATIONS

Evaluating Emission Benefits of a Hybrid Tug Boat

Final Report October 2010

Prepared for:

Mr. Todd Sterling California Air Resources Board 1001 I Street, Sacramento, CA 95814

Contract #07-413 and #07-419

Authors:

Ms. Varalakshmi Jayaram Mr. M. Yusuf Khan Dr. J. Wayne Miller Mr. William A Welch Dr. Kent Johnson Dr. David R Cocker

University of California, Riverside College of Engineering-Center for Environmental Research and Technology Riverside, CA 92521

SOURCE: California Air Resource Board Report Prepared by: University of California - Riverside

College of Engineering - for Environmental Research and Technology

Press Release - EPA

U.S. ENVIRONMENTAL PROTECTION AGENCY

National Clean Diesel Campaign

EPA Clean Diesel News: 7/11/13

EPA recently approved the verification of the Foss Maritime Company and Aspin Kemp & Associates (Foss Maritime / AKA) XeroPoint Hybrid Tugboat Retrofit System (XeroPoint). XeroPoint is an alternative drive system for use on certain marine vessels. XeroPoint includes a new generator and engine set, modification to the vessel's propulsion system, an energy management system, and other components to reduce emissions and fuel consumption for harbor tugboats.

Foss Maritime / AKA's testing showed emission reductions of about 25% for PM, 30% for NOx, and 30% for CO2. Additionally, these results indicate an approximate 30% fuel savings with the XeroPoint Hybrid System.

Source: http://www.epa.gov/cleandiesel/verification/techlist-foss.htm

Green Technology Integration

There are many options!

Making the right decision is tough!

- Evaluating options and selecting the appropriate technologies for a project can be a challenge.
- Use common sense and any available hard data to determine a technology's suitability.
- Beware of "Greenwashing" and understand the limitations of any selected technology.
- Non-monetary benefits might drive a project.

Making the right decision is tough!

- The choice must meet requirements operationally, commercially and environmentally.
- Include stable technologies...don't experiment with mission critical systems.
- The proper balance is reached when green solutions are delivered at a competitive cost, without losing sight of operational performance.

Duty Cycle Considerations

*data from actual operations, Foss Maritime SoCal

Tugs: A Hybrid Realty Duty Cycle!

- As with many other vessel types, tugs need a significant amount of power....but not very often.
- Their propulsion design is typically focused on the tug's rated bollard pull...where the vessels do not spend much time.
- Lack of flexibility in plant configuration leads to inefficiency.

XeroPoint Hybrid System

Cat Powered Marine Hybrid

Hybrid Definition & Illustrations

Hybrid Marine Propulsion System

A propulsion system which incorporates combination of energy storage and/or drive line configurations to reduce or eliminate the low efficiency operation of combustion engines.

Incorporating:

- **1. Generation** and transmission of mechanical, mechanical electrical and electrical power for propulsion
- 2. Energy **storage** (Electrical, chemical and/or mechanical) to absorb excess power developed and to allow it to be re-used later in the operational duty cycle
- 3. Energy **management & distribution** system capable of maximizing the vessel's efficiency at multiple points on its duty cycle.

Conventional Configuration

Diesel-Electric

Diesel-Electric with Storage

Hybrid

Hybrid Schematic

System Control & Monitoring

- Mounted on wheelhouse console and in engine room.
- Simple to use lots of valuable information.
- Dynamic elements.
- Trending & Data Capture.

Control Console

Trending

Key Features & Benefits

- Fuel Savings
- Reduced Emissions
- Increased Redundancy
- Reduced Maintenance Costs
- Healthier Workplace for operators

Conclusions

- Environmentally friendly technologies can be incorporated into vessel design and manufacturing without compromising operation performance or sacrificing cost competitiveness.
- The flexibility that can be achieved has the potential to dramatically improve efficiency and life-cycle costs compared to conventional vessels.
- Best achieved by taking a balanced, pragmatic and methodical approach to selecting and incorporating the available options.

Energy Management System Overview

Detailed System Schematic

Power Plant Modes of Operation

Non-Hybrid Mode

Stop Mode

Idle Mode

Transit Mode 1

Transit Mode 2

Assist Mode

Single Main Engine Mode

HYBRID OVERVIEW

