

Interim Review

2 April 2004

Concept Definition

Concept Design Capabilities

	UNOLS OCEAN Class	UNOLS OCEAN Class	UNOLS Ocean Class Monohull	AGOR 26 SWATH
Summary:	Minimum SMRs	Desired SMRs	Desired	
Seakeeping requirement	SS6	SS6	SS6	SS6 Best Hdg
Ship Dimensions:				
Length between perp, ft			210	172
Beam, ft			46	88
Depth to Main Deck, ft			24.9	38
Draft, ft		19	16.9	25
Finished Deck Ht (ft)	7.5	8	8	
Displacement, long tons			2500	2542
Propulsion:				
Plant type	Integrated Diesel Electric	Integrated Diesel Electric	Integrated Diesel Electric	Integrated Diesel Electric
# Screws		Liccult	2	2
Total SHP			4,000	4.000
Speed, sustained		12	11	15
Speed, maximum		14-15	15	15.5
Speed, survey		12	12	12
Towing Requirement	10000@6, 25000@4	10000@6, 25000@4	10000@6, 25000@4	10000#
Endurance Requirement	8000 nm @ opt spd, 20 days transit, 20 days station	10800 nm @ 12 kts, 20 days transit, 20 days station, or 30 days survey	10800 nm @ 12 kts, 20 days transit, 20 days station, or 30 days survey	10,000 nm at 11 kts
Bow Thruster	Yes	Yes	900 HP	1100 HP

Bold Text Indicates SMR

Concept Definition

Concept Design Capabilities

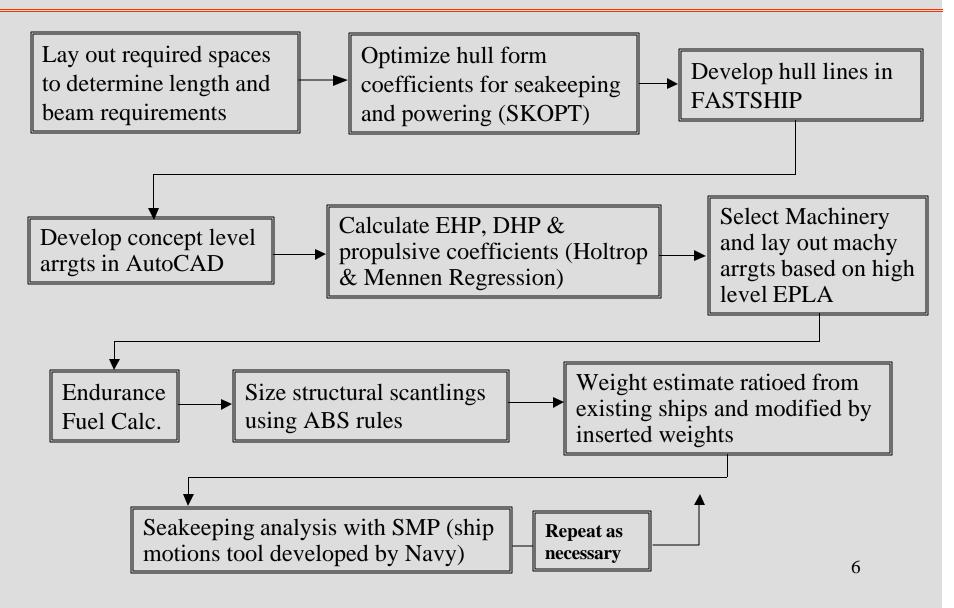
	UNOLS OCEAN	UNOLS OCEAN	UNOLS Ocean	AGOR 26
	Class	Class	Class Monohull	SWATH
Summary:	Minimum SMRs	Desired SMRs	Desired	
Accommodations:				
Crew		18	18	17
Scientists	20	25+	25+	31
Total		43	43	48
Certifications:				
ABS	Yes	Yes	Yes	Yes
USCG	Subchap U	Subchap U	Subchap U	Subchap U
Ice Class	A0	A0		D0
Space and Payload:				
Total Lab Space, sq ft	1,800	2,000	2,000	2,762
Main Lab	1,000	1000+	1,200	
Wet Lab	400	400+	415	330
Computer Lab	300	300+	300	830
Climate Contrl'd Work Area	100	100+	115	No
Refrigerator/Freezer Space	100	100	100	No
Number of Labs	4	4	4	8
Electronics Repair Shop	Yes	Yes	Yes	No
IT Equipment Space	No	Yes	Yes	No
IT Storage	Yes	Yes	Yes	Yes
ISO Vans	2	2	2	2
Vans (Non ISO, 500ft ttl)		2	2	0
Working Deck Space, sq ft	2,000	2,000	2,000	2,200
Clear Working Deck, sq ft	1,500	1,500	1,500	1,360
Clear Rail Deck, sq ft	80' x 8'	80' x 8'	80' x 8'	No
Mission storage, cu ft		5,000	5,000	15,000
Mission payload, long tons	100	200	200	100
High Bay	Yes	Yes	Yes	Yes

Bold Text Indicates SMR

Concept Definition

Concept Design Capabilities

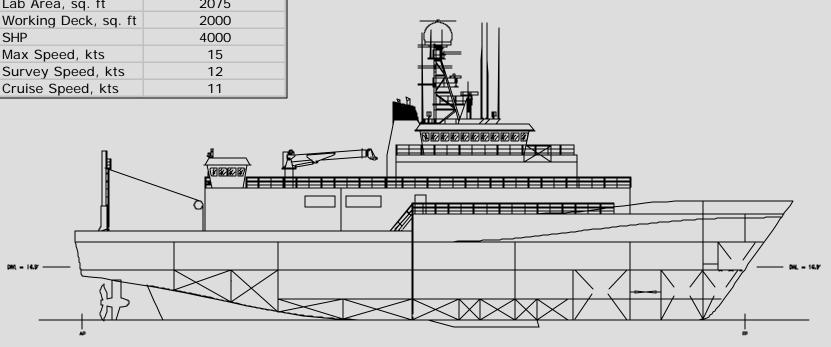
	UNOLS OCEAN Class	UNOLS OCEAN Class	UNOLS Ocean Class Monohull	AGOR 26 SWATH
Summary:	Minimum SMRs	Desired SMRs	Desired	
Mission Electronics Systems:				
Dynamic Positioning	Yes	Yes	Yes	Yes
Deep multibeam	1 deg	1 deg	1 deg	(1x2 deg)
Shallow multibeam				Yes
Single beam echosounder	12kHz	12kHz	12kHz	12,38,200kHz
Subbottom profiler	2-8kHz	2-8kHz	2-8kHz	Yes
ADCP	38,75,150kHz	38,75,150kHz	38,75,150kHz	125kHz
Acoustic positioning				Yes
Handling Systems:				
Stern U frame	30000# 15'Hx25'Vx12'O	30000# 15'Hx25'Vx12'O	30000# 15'Hx25'Vx12'O	20000# 18'Hx25'Vx12'O
Towing crane				Yes
Boom cranes	10000# @12'	20000# @20'	20000# @20'	20000# @30'
Traction winch	1	1	1	Yes
Hydrographic winch	2	2	2	1
Scientific Workboat	25'-30' LOA	25'-30' LOA	(1) 30' LOA	No
Inflatable Work Boat	1 (16')	1 (16')	1 (16')	Yes


Concept Definition

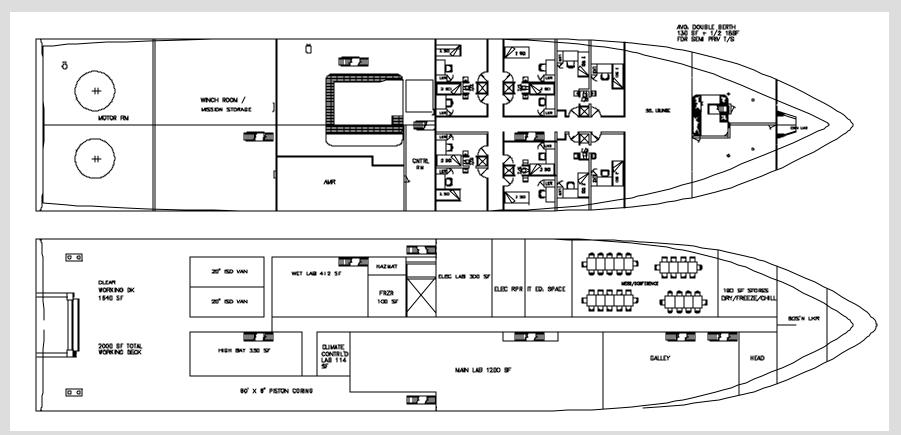
Concept Design Process

- Develop 3 Desired (objective) ship concepts that meets the desired SMRs
 - Monohull
 - SWATH
 - X-Craft Variant
- Determine changes to designs to meet minimum SMRs
- Determine feasibility of \$50M cost cap

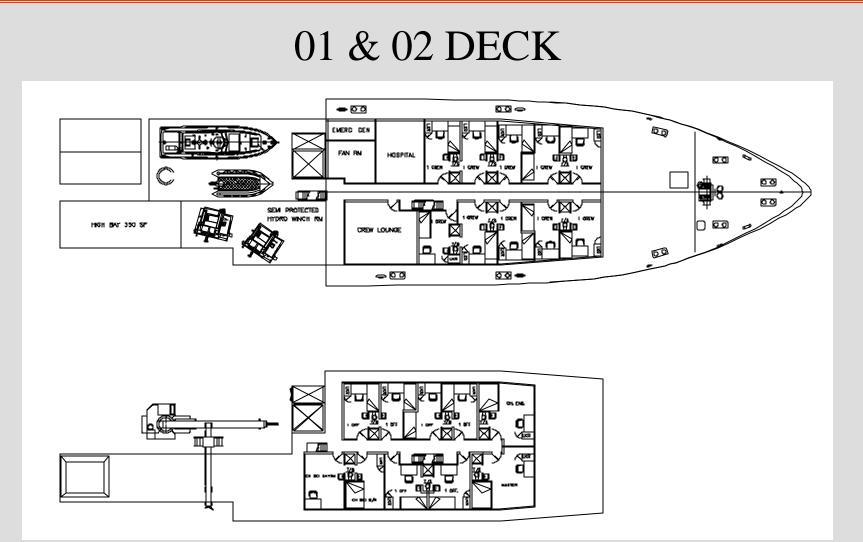
Concept Definition


Concept Design Process

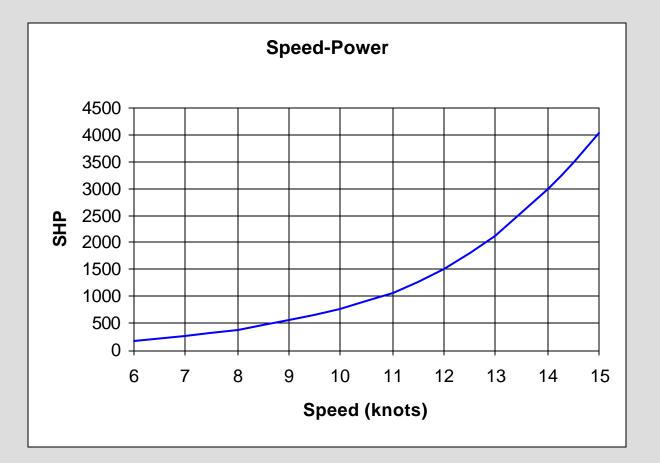
Concept Design Variants


	DESIRED MONOHULL
LOA,ft	227
LWL, ft	210
Beam WL, ft	46
Max Beam, ft	46
Draft, ft	16.9
Displacement, LT	2500
Scientists	25
Crew	18
Lab Area, sq. ft	2075
Working Deck, sq. ft	2000
SHP	4000
Max Speed, kts	15
Survey Speed, kts	12
Cruise Speed, kts	11

Desired Monohull Concept


Concept Design Variants

MAIN DECK & 1ST PLATFORM


Concept Definition

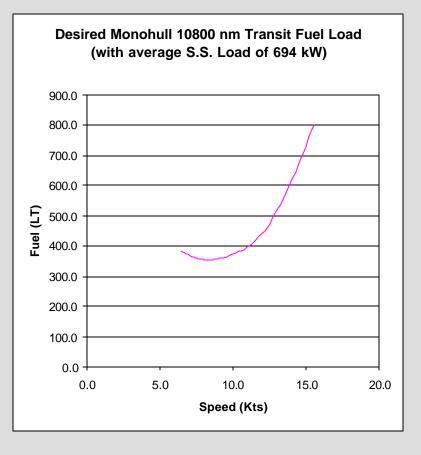
Concept Design Variants

Propulsion - Monohull

Powering Estimates

Main Propulsion System

- Integrated Diesel Electric System
 - 3 x 1195 bkW, Caterpillar 3516 Propulsion Gensets
 - 3 Caterpillar 3412C Ship Service Gensets
 - 2 x 350 ekW, 50 Hz @ 1500 rpm for 700 ekW + standby
- Propulsion Motor and Propeller Unit
 - 2 x 1500 kw, 1000 rpm DC motors
 - 2 x steerable fixed pitch Z-drive. 2 x 2850 max kW @ 1000 rpm. Propeller diameter = 11.5 feet.


Dynamic Positioning System

- Bow Thruster
 - 1 x Elliott White Gill T3S-40, 686 kW

Propulsion - Monohull

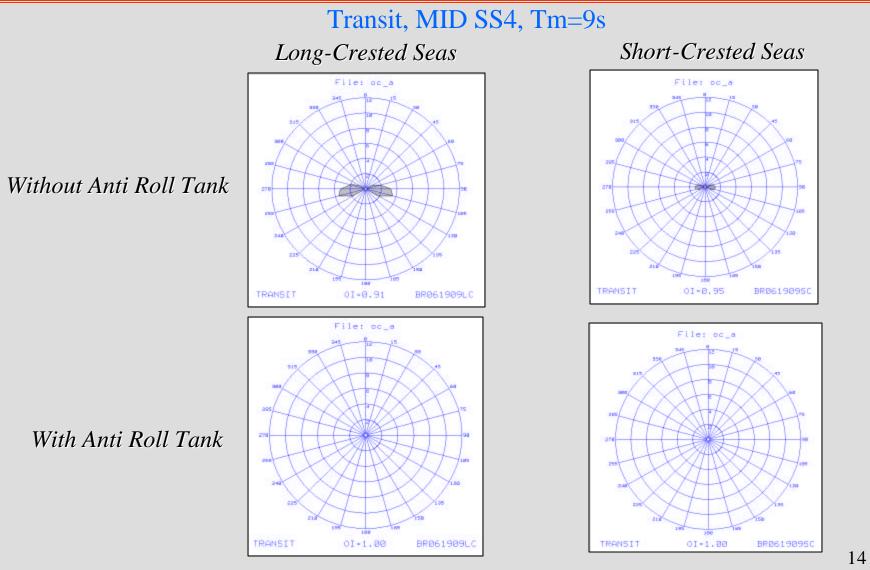
Mission Fuel Load Estimates

- Transit, 20 Days @ 12 Knots & 20 Days on Station
 - 375 LT of Fuel
- Survey, 30 Days @ 12 Knots
 - 410 LT of Fuel
- Transit, 10800 nm @ 11 Knots
 - 395 LT of Fuel

Concept Definition

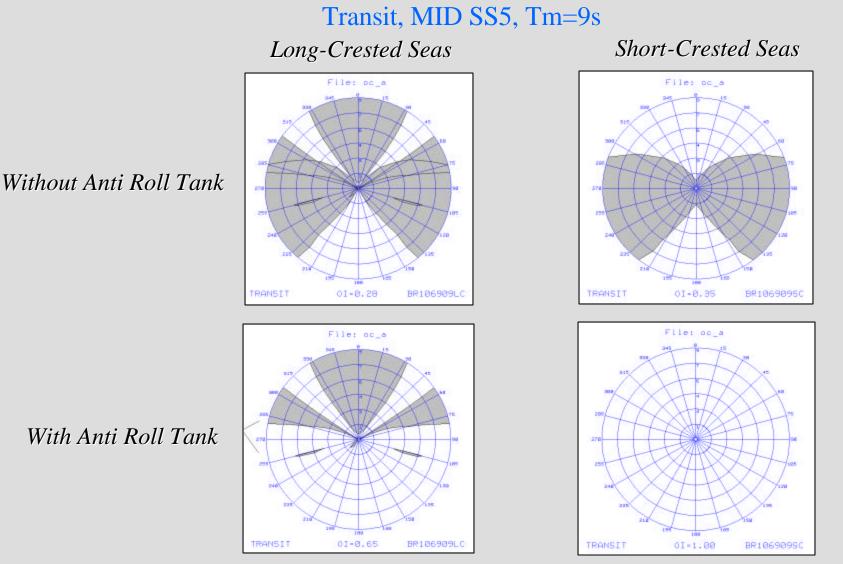
Seakeeping - Table of Operabilities

						Short-Crested	Long-Crested
Region	Season	Perf.	Mission	Sea State	SMR	Desired	Desired
North Atlantic	Annual	SPI-1	All	Spectrum	75% Winter	83%	76%
Pacific NW	Annual	SPI-1	All	Spectrum	75% Winter	85%	77%
North Atlantic	Winter	PTO	On Station	SS4	100%	100%	100%
North Atlantic	Winter	PTO	On Station	SS5	80%	95%	83%
North Atlantic	Winter	PTO	On Station	SS6	50%	53%	34%
		-					
North Atlantic	Winter	PTO	Transit	SS4	100%	100%	100%
North Atlantic	Winter	PTO	Transit	SS5	80%	94%	81%
North Atlantic	Winter	PTO	Transit	SS6	50%	55%	37%
		-					
Pacific NW	Winter	PTO	On Station	SS4	100%	100%	100%
Pacific NW	Winter	PTO	On Station	SS5	80%	95%	83%
Pacific NW	Winter	PTO	On Station	SS6	50%	81%	63%
Pacific NW	Winter	ΡΤΟ	Transit	SS4	100%	100%	100%
Pacific NW	Winter	PTO	Transit	SS5	80%	94%	81%
Pacific NW	Winter	PTO	Transit	SS6	50%	81%	63%

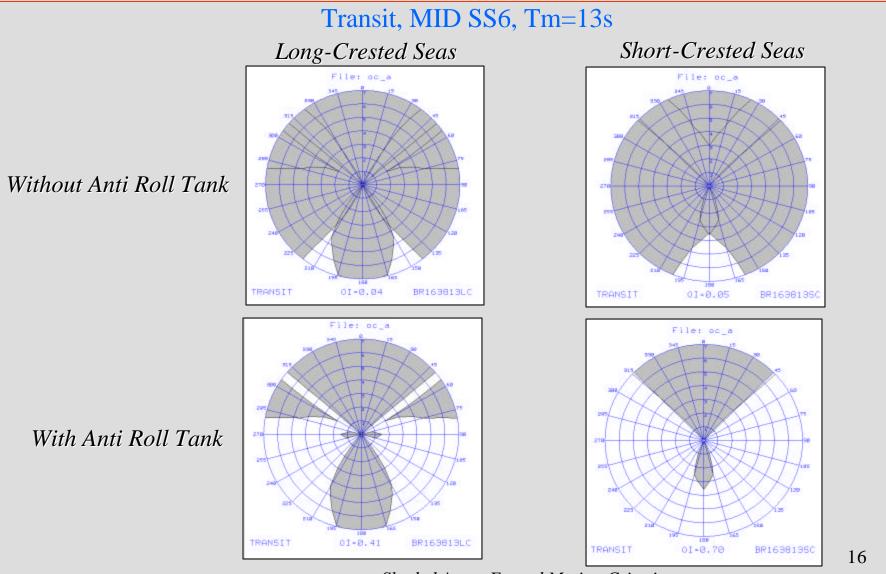

Notes:

1) PTO = Percent time operability in a given sea state; SPI-1 = Seakeeping performance index (probability weighted across sea spectrum

2) PTO analysis accounts for probability of significant wave heights for specific regions in Winter (January-March)

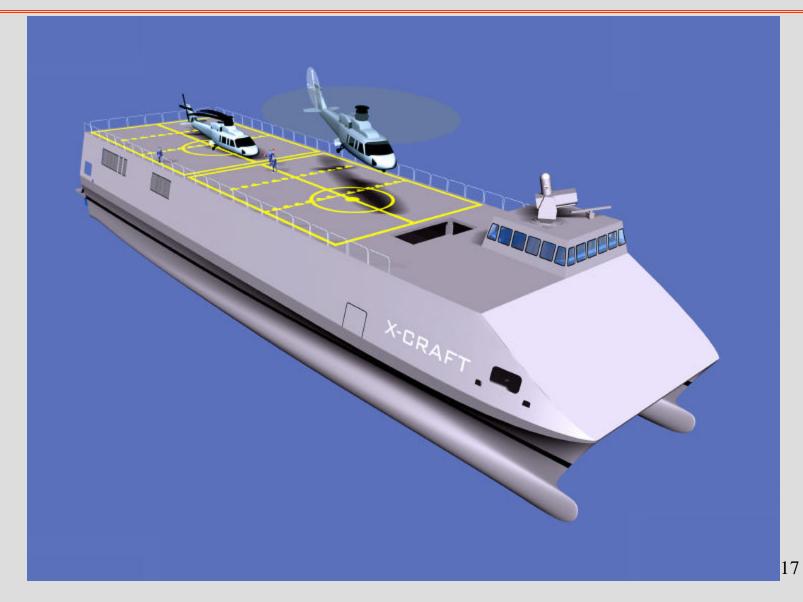

3) SPI-1 analysis assumes most probable modal wave periods for N. Atlantic and N. Pacific (Bales)

Seakeeping - Effect of Anti Roll Tank on Monohull Motions


Shaded Areas Exceed Motion Criteria

Seakeeping - Effect of Anti Roll Tank on Monohull Motions

Shaded Areas Exceed Motion Criteria


Seakeeping - Effect of Anti Roll Tank on Monohull Motions

Shaded Areas Exceed Motion Criteria

Concept Design Variants

X-Craft

X-CRAFT

• _ •

	Main Characteristics					
	ONR X-Crat	ft X-Craft AGOR				
Length Waterline, j	ft 240	240				
Beam, Overall, ft	72	72				
Beam, Waterline, f	t 16.6	20.5				
Draft, ft	11.8	14.6				
Displacement, Ltor	n 1400	2150				
Speed, knots	>50	12				
Propulsion	Gas Turbines & Diesels	Diesel Electric, Integrated				
	2 x 25 MW, 2 x 4 MW	6 x Caterpillar 3412C				
Range	4,000 nm @20 knots	10,800 nm @12 knots				
Payload, Lton	150	200				

25

 \frown 1

ъл •

Range Payload, Lton Crew 72,000hp@50 knots SHP Working Deck Area Lab Area

200 18 + 25 Scientists 2,800hp@12 knots 2,050 sq. ft 2,108 sq. ft

18

X-CRAFT

Concept Definition

AGOR Variant

🤣 Displacement

- Based on the Ocean AGOR SMR, the UNOLS X-Craft is estimated to have a displacement of 2,150 Lton, compared to the 1,400 Lton ONR X-Craft.
- To gain the required additional displacement, one option is to linearly scale two side hull cross sections under wetdeck and keep the ship length and hull above wetdeck unchanged.

🔅 🛛 General Arrangement

- The mission bay deck of the ONR X-Craft will be the main deck of the UNOLS X-Craft.
- Remove the heavy flight deck of the ONR X-Craft.
- Add an 01 deck over the main deck.
- More than enough space available based on the existing main dimensions. Therefore, the length and beam of the ONR X-Craft were kept unchanged.

🔅 Hull Form

- > No change of the ship length.
- \blacktriangleright Geosim in the body section under the main wet deck with a linear ratio of 1.239.

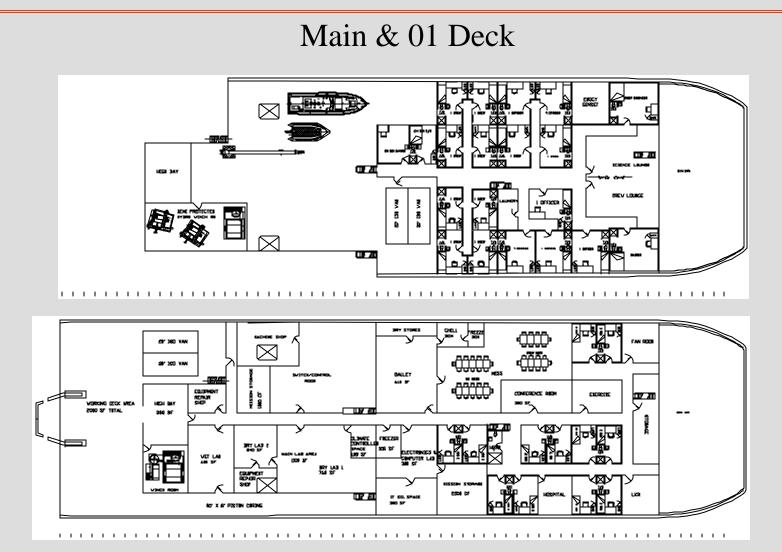
X-CRAFT

Concept Definition

AGOR Variant

Since the operation speeds are significantly lower, it is believed that at least the stern shape needs to be changed to optimize the low speed resistance of the Ocean AGOR.

🤣 Structures

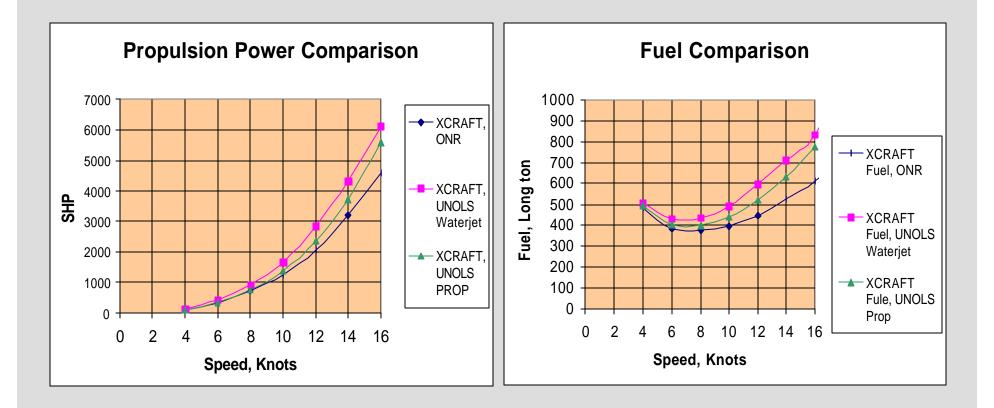

- > Aluminum structure.
- > The hull shall be designed to ABS 90 meter Rules or SWATH Guide.
- Design speed difference will change scantlings.
- > The deck structures will be designed according to the SMR loading requirements.
- Current Flight Deck shall be replaced by a much lighter deck structure.

Propulsion System

- The gas turbines shall be removed
- > The gear diesel prime movers will be replaced by integrated diesel-electric systems.
- There is no need for 4 waterjets for the much lower speed requirement. Two water jets may be installed instead.
- Low speed water jets should be investigated to provide higher propulsion efficiency at 12 knots, such as the Traktor Jet. The current KaMeWa high speed water jet performs poorly at low speeds.
- > Traditional propeller could be an optional propulsor with a higher efficiency.

X-CRAFT

Concept Definition



X-CRAFT

AGOR Variant Profile First Platfa X-Craft Profile 111111 ait THE THESE m 3 CTR

Propulsion – X-Craft

Resistance and Fuel Consumption

X-CRAFT

Concept Definition

Discussions of the AGOR X-Craft Variant

🔅 Hull Form

- Current hull form is for high speed and high propulsion power design.
- Modification to the hull form may yield better performance at lower speed.
- Stern shape change to accommodate the propulsion method change.

Propulsion System

- Availability of low speed waterjet. Most of the waterjets today are designed to operate at high speeds (>30 knots) and have low propulsive efficiencies (<0.45) at low speeds (<20 knots). Traktor Jet has large impeller diameter low speed water jets with higher efficiency (~ 0.5). But the model that can produce the required thrust is still in the prototype stage.
- Shafted propeller with rake is an option. Propeller and required clearance need to be verified. Propeller efficiency typically 0.6 or better.
- > Z-drive. The unit is usually much heavier than a water jet or a shaft propeller.
- \succ SWATH type stern with propellers at the end of the tail cones.

Work Remaining

- Incorporate Comments
- Refine X-Craft Concept Designs & Analysis
- Develop SWATH AGOR Concepts
- Size Minimum SMR Concepts
- Investigate Technologies
 - •Portable Lab Vans
 - •Overside Handling
 - •Bubble Sweepdown