3D SEISMIC: THE GEOLOGICAL 'HUBBLE'

Joe Cartwright

3DLAB

CARDIFF UNIVERSITY

2001 UKCS 3D coverage: 137,688km2

Highest % coverage by surface area

AIM OF TALK

Explore the potential for 3D Seismic as a tool for geoscience research

Show what PhD research can achieve:

Aidan Joy, Chris Mansfield, Edwin Tervoort, Dustin Lister, Stephen Molyneux, Renaud Bouroullec, Jon Clemson, James Clark, Andrew Robinson, Dorthe Hansen, Jens Hansen, Valente Paramo, James Trude, Simon Shoulders, Jose Martinez, Sulaiman Al-Bassam, Thomas Melgaard, Mike Hohbein, Claudia Bertoni, Catherine Baudon and Mairi Nelson.

BP, Shell, Hydro, Statoil, Schlumberger, Veritas, PGS, NERC, Total, Hess, ExxonMobil BGgroup, ConocoPhilips, IMP, Danish Academy, Royal Society.

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

Themes

Seismic Palaeoceanography

Crustal Magma Transport

Basin Hydrodynamics

Odds and Ends

Geometry and kinematics.....

TIME MAP – t4w

DIP AND AZIMUTH MAP

Upslope migrating 'sediment waves'

Dipmap showing moat architecture

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

Igneous systems

3D geometry and emplacement mechanics of igneous intrusions

Magma transport in sedimentary basins

Saucer-shaped sills: Namibia

Hansen et al 2004

PRIFYSGOL

Hansen et al 2004

Feeder sills

Hansen et al 2004

CARDIFF UNIVERSITY PRIFYSGOL

Ridged morphology of the Corona Sill: James Trude, 2004

Cartwright & Hansen: Figure 1

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

Cartwright & Hansen: Figure 2

Cartwright & Hansen: Figure 4

Basin hydrodynamics

How does fluid migrate in sedimentary basins?

How does fluid migration link with rock deformation and diagenesis?

What is the mass balance?

"Polygonal fault systems are arrays of layer bound extensional faults with a polygonal planform geometry"

Global distribution of layer-bound and polygonal faults

layer-bound faults-2D seismic data

1km

5km

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

10km

UNDERMINING OF SLOPE BY BASE-OF-SLOPE CRATER DEVELOPMENT

Shoulders and Cartwright Figure 1.

500ms

5km

2km

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

Shoulders and Cartwright (2004).

Odds and Ends

CONCLUDING REMARKS

3D seismic could (and should) revolutionise research and teaching in the geosciences

The resolving power of the 3D data is the key to gaining new insights into deformational, depositional and igneous processes

Greatest opportunity for exploratory research since early-mid 20th C field geological mapping

Much discovered already, but much more to come.....

