

Regional Class Research Vessels

Innovations in Research Vessel Design

RCRV Project Update November 18, 2014 INMARTECH

Academic Fleet Renewal is part of longterm UNOLS community planning

New Portraits in the UNOLS Fleet

R/V Sikuliaq

R/V Neil Armstrong

RCRVs will facilitate **coastal research and education**, serving many stakeholders. Design and project management benefiting from lessons these builds.

RCRV Project Status and Timeline

- 4 phase, 10-yr project
 - Phase I = Design Refresh
 - Phase II = Shipyard Selection
 - Phase III = Construction
 - Phase IV = Transition to Ops
- Up-to-3 ship class acquisition
 - Leads to overlap of Phases III and IV
- Currently at start of Phase IC
- PDR approved by NSF

Vessel Description

Top Level Design Requirements

- Twin azimuthing drives and dynamic positioning
- A retractable centerboard to support integrated acoustic systems
- Large aft deck for operational flexibility and sideby-side 20' laboratory vans
- High bandwidth satellite telecommunications
- Acoustic quietness
- Energy efficient features
- ADA referenced accessible stateroom and labs
- Endurance- 21 days
- Mission Payload 50 long tons

NSF-owned UNOLS RCRV

Other Design Drivers determined during refresh

- ABS Ice Class: C0
- ABS DP Class: DPS-1
- Voluntary Enviro Certified: Green Marine & IAPH Environmental Ship Index (air emissions and other standards)
- Sea-keeping: U-tube anti-roll system

Noteworthy RCRV Innovations (evolutions...)

- Vessel Advancements
 - Power Generation (Siemens' Blue Drive Plus C)
 - Schottel Push Pull Z-Drive
 - Hull Design (optimized modified bulbous bow)
- Science Support Advancements
 - Stern Frame and LARS
 - Centerboard design
 - Incorporation of Deck Skidding
 - Telepresence Concept

Inboard Profile

General Arrangement

Main Lab 510 ft²
Wet Lab 350 ft²
Computer Lab 175 ft²

Main Deck (aft of house) 2,020 ft²
Main Working Deck (including side deck) 2,230 ft²
Side Deck Length 70 ft
Space on the port side for two vans (mated to superstructure)

General Arrangement

245 ft² Telepresence Center 550 ft² Winch Deck Area

Science Berths

8 Double Staterooms on O1

(includes accessible stateroom on Main Deck)

Marine Technician

1 Double Stateroom

Hull Form

- Modified Bulbous Bow
- Lightweight Construction Materials
- Minimized ballast and No fixed ballast
 - Increases fuel efficiency by up to 6% at cruise speed
 - Reduces weight, lowering power requirements

Length of Waterline	178' - 0"
Breadth, Molded	41' - 0"
Depth, Molded	19' - 0"
Design Draft	12' - 6"

Hull Coefficients	
Prismatic	0.622
Maximum Section	0.931
Block	0.579
Waterplane	0.803

Propulsion System / Power Generation

Integrated diesel electric propulsion with three variable speed DC generators, water-cooled AC electric motors and azimuthing propulsors

Scenario	Total Load kW	# Gens On-Line	% Gen Load
Transit Summer	1242	2	79%
Transit Winter	1300	2	84%
Transit Temperate	1216	2	78%
Full Speed	1760	3	73%
Heavy DP	1446	2	93%
Towing	1195	2	77%
In Port	248	1	37%
Emergency	143	E-Gen	97%

Variable Speed DC Power Generation

Increase Fuel Efficiency

- Variable Speed Power Generation
- Power electronics produce 60Hz power
- Optimal operating point
- Increased fuel economy (g/kWh), especially at light loads
- 5%-15% fuel savings

Sea Keeping

U-Tube Anti-Roll Tank

Operability

Max Roll Displacement 3° RMS Max Pitch Displacement 2° RMS Max Lateral Acceleration Max Vertical Acceleration

0.05g

0.15g

Located in hull frames 36 – 39. (Duct width is same as tank width)

Table 7 Percent operability in the Gulf of Mexico

Operability: Gulf of Mexico							
	Heading	4 kts SS 6	7 kts SS 5	9 kts SS 4	12.5 kts Calm Water		
Head Seas	0	98.9%	100.0%	100.0%	100.0%		
	15	98.9%	100.0%	100.0%	100.0%		
	30	96.0%	97.1%	100.0%	100.0%		
	45	93.1%	94.2%	100.0%	100.0%		
	60	93.1%	94.1%	100.0%	100.0%		
	75	93.0%	94.1%	100.0%	100.0%		
Beam Seas	90	93.0%	94.1%	100.0%	100.0%		
	105	93.0%	94.1%	100.0%	100.0%		
	120	93.0%	94.1%	100.0%	100.0%		

Propeller

- Using Schottel STP Twin Propeller
 - Push/Pull, ducted, single shaft
 - Lower RPM (reduces cavitation, increases efficiency)
 - Reduced individual propeller size but greater surface area (increases efficiency and bollard pull)
- 4 Propellers are individually "wake adapted" for maximum efficiency.
 - Fits well with RCRV hull form

A Continuous & Robust Sampling Platform

*Other Research Vessels provide only ancillary data such as Temperature and Salinity, few include transmittance and chlorophyll but rarely is this data provided in real time or QC'ed

Data Stream

- Surface Salinity
- Surface Temperature
 - **Light Transmission**
- Dissolved Oxygen
- pH/ Oxidation Reduction Potential
- Chlorophyll

- Phycoerythrin or Rhodamine
- Phycocyanin
- Colored Dissolved Organic Matter
- Turbidity- Red, Blue and Green Scattering
- Nitrate
- □ Total CO₂ and pCO₂
- Irradiance

Linking Scientists to Quality Real Time Data

Deck Skidder Systems- For CTD

RCRV Centerboard Concept

- Centerboard provides a platform for: Evolving suites of sonars; Placing sonars below the bubble layer; Service/changeout of transducers without drydocking.
- Incorporates removable 2-foot bottom section and interchangeable face plates to accomodate a variety of current and future sonars
- Centerboard will carry compact multibeam and ADCPs
 - These require tight repeatability in roll/pitch/yaw
 OR
 - Separate, Centerboard-mounted, Position/Attitude/Time System
 - RCRV will incorporate both
- Currently Under Development

One possible arrangement of sonars on Centerboard "Foot"

Discovery's and Sikuliaq's Centerboards

New R/V Sikuliaq Stern A-Frame Design

UNOLS
"Standard
Bolting
Flange"

Built to UNOLS "App B" Standards (DLT=120kip)

Removable / Swappable Wings

Rotating Trunnion Style Cross Beam

Conclusions

- RCRV: Regional Class Research Vessels to meet national coastal ocean priorities within the 21st Century
- Much input from the science community has led to several innovations in the next generation RCRV science support systems.
- Close monitoring of the maritime industry has led to the incorporation of several next generation technologies used to improve efficiency and performance.

