Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
Main Subject Head	lings are hyperlinked to Online SMI	R document		
Size and Cost				
Length	55-70 meters (180 to 230 feet)	LOA not to exceed 300 feet	FOFC Plan = 70 - 90	
Cost	\$50 million, total program cost in 2001 \$'s	Not specified	\$70 million in 2001 \$s, total	
Draft	Consider ports to operate from (~18 - 19 ft)	Not specified		
Accommodations and	<u>d habitability</u>			
Accommodations	20 to 25 non-crew personnel - Crew and Technicians in single staterooms to the maximum extent possible. Non-crew in 2 person	30 - 35 in 2 person rooms expandable to 40 with vans	FOFC plan = 30 - 35	
Habitability	Attention to details that ensure effective work and living spaces.	Science library lounge with conference capability. Science		
Operational characte	eristics			
Endurance	40 days (20 transit and 20 station) 30+ days for underway survey or towing cruises at 4 - 12 knots.	60 days (18 transit 42 on station)	FOFC plan = 50 Days	
Range	Up to 20,000 km (10,800 nautical miles) at optimal transit speeds. Minimum of 14,815 km (8,000 nm) required	15,000 nautical mile range at cruising speed (27,778 km)	FOFC plan = 25,000 km (13,500 nm)	
Speed	12 knots sustainable through sea state 4. 14 - 15 kts maximum at sea trial in calm seas. Optimum cruising speed of at least 12 kts desirable.	15 knots cruising sustainable through SS 4		
Speed Control	Speed control in sea state 4 or less should be ± 0.1 kts in 0 - 6 kt range and ± 0.2 kts in the 6 - 14 kt range	Speed control +/- 0.1 kt in 0-6 range ; and +/- 0.2 kt in range 6 15 kt		

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
Sea keeping	Fully operable in sea state 4.	Maintian science operations in		
	Maximize ability to work in sea	following speeds and sea states:		
	states 5 (2.5 to 4 m wave heights)	15 kt cruising through SS 4		
	and higher. 75% operability in PNW	13 knots cruising through sea		
	and NA during winter. At sea state	state 5		
	5: maintain 9 knots, maintain on	8 knots cruising through sea		
	station ops 80% of time (CTD ops	state 6		
	90%, Moorings 75%, Coring 50%,	6 knots cruising through sea		
	ROV and similar 50%). At sea state	state 7		
	6, maintain 7 knots and 50%			
	operability. At sea state 7 and			
SK - Vertical	SS5 - less than 0.15 g (rms)	not specified		
SK - Lateral	SS5 - less than 0.05 g (rms) at deck	not specified		
accelerations	level			
SK - Maximum roll	SS5 - less than 3 degrees (rms)	not specified		
SK - Maximum pitch	SS5 - less than 2 degrees (rms)	not specified		
SK - Deck wetness	Not specified, criteria used by JJMA -	not specified		
	get # of deck wetting events			
Station keeping	Dynamic positioning ± 20 meters	Allow normal station and deck		
	relative to a fixed position in 35	work in sea states through SS 5		
	knot wind, sea state 5, and 2 knot	and limited work through SS 7.		
	current at best heading. ± 5 meters	At best heading in 35 kt wind,		
	through SS4 at best heading. DP	SS 5 and 2 kt current maintain		
	system design to minimize adverse	within 50 meters of fixed		
	affects on the operation of acoustic	position		
	systems as much as possible.			

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
Track line following	Maintain a track line within \pm 5	Maintain a precision track line		
	meters of intended track and with a	95% of time within 50 meters		
	heading deviation (crab angle) of	while towing at speeds as low as		
	less than 45 degrees with 30 knots	0.5 kt with heading deviation up		
	of wind, up to sea state 5 (2.5 - 4 m	to 45 0 from prescribed trackline		
	wave heights), and 2 knots of	using GPS or bottom nav as		
	current. No large and/or frequent	reference. Speed control should		
	heading changes.	be maintained =/- 0.1 kt		

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
Ship control	The chief requirement for ship	Chief requirement is maximum		
	control is maximum visibility of deck	visibility of deck work areas		
	work areas and alongside during	during science operations and		
	science operations and especially	especially during deployment		
	during deployment and retrieval of	and retrieval of equipment. This		
	equipment. This should be	would envision a bridge-pilot		
	accomplished with a direct view to	house very nearly amidships and		
	the maximum extent possible and	with unobstructed stern visibility.		
	enhanced with closed circuit			
	television systems. Portable hand-	The functions, communications,		
	held control units or alternate	and layout of the ship control		
	control stations could also be used	station should be carefully		
	at various locations that enhance	designed to enhance the		
	visibility and communications with	interaction of ship and science		
	the working deck during over the	operations. For example, ship		
	side equipment handling. The	course, speed, attitude, and		
	functions, communications, and	positioning will often be		
	layout of the ship control station	integrated with scientific		
	should be carefully designed to	operations requiring control to		
	enhance the interaction of ship and	be exercised from a laboratory		
	science operations. For example,	area.		
	ship course, speed, attitude, and			
	positioning should be integrated			
	with scientific information systems.			
	Voice communication systems			
	between the bridge, labs, working			
l	decks and machinery snaces should			

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
Ice strengthening	It is desirable that two vessels (one	ABS Ice Class IA. Able to transit		
5 5	in Atlantic & one in Pacific) in this	loose pack. Not intended for		
	class have the capability to operate	icebreaking or close pack work.		
	in the presence of 6/10 coverage of	Protection against encounters		
	first year ice and should be designed	with growlers and other glacial		
	to meet the criteria for the	ice difficult to detect.		
	appropriate ice classification.			
Over-the-side and we	ight handling			
Over-the side	The design of weight handling	New generation of oceanographic		
equipment	appliances to safely and effectively	winch systems providing fine		
	deploy, recover, and sometimes tow	control (0.5m.min); constant		
	a wide variety of scientific	tensioning and constant		
	equipment should be considered at	parameter. Wire monitoring		
	the earliest stages of the design	systems with inputs to		
	cycle so that they are integrated in	laboratory panels and shipboard		
	the earliest layout of spaces. The	recording systems. Local and		
	entire suite of over the side handling	5		
	equipment including winches, wires,	installed general-purpose		
	cranes, frames, booms, and other	winches include: - two winches		
	appliances should be considered as	capable of handling 30,000 ft of		
	an integrated system and perhaps	wire rope or electromechanical		
	engineered and designed by a single	cables having diameters from		
	contractor/manufacturer. Designs	1/4″ to 3/8″.		
	for over the side appliances and			
	equipment should include innovative			
	thinking and consider ideas that will			
	reduce the amount of human			
	intervention necessary for launch			
	land recovery of convincent both on			

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
Winches	Winches should provide fine control	- A winch complex capable of		
	(0.1 m/min under full load);	handling 40,000 ft of 9/16"		
	maximum winch speeds should be	trawling or coring wire and		
	at least 100 meters/min. Two	30,000 ft of 0.68"		
	hydrographic-type winches capable	electromechanical cable (up to		
	of handling up to 10,000 meters of	10 KVA power transmission and		
	wire rope, electromechanical or fiber	fiber optics). This could be two		
	optic cables having diameters from	separate winches or one winch		
	1/4" to 1/2" should normally be	with two storage drums.		
	installed. Winches should be readily	Additional special purpose		
	adaptable to new wire designs with	winches may be installed		
	sizes within a range appropriate to	temporarily at various locations		
	the overall size of the winch. A	along working decks. Winch sizes		
	heavy winch complex capable of	may range up to 40 tons (140 sq		
	handling 12,000 meters of 9/16"	ft) and have power demands up		
	wire/synthetic wire rope and/or	to 300 hp. (See also		
	10,000 meters of 0.68"	Multichannel Seismics).		
	electromechanical cable (up to 10			
	KVA power transmission) or fiber	Portable shelters available to		
	optics cable should be permanently	winch work areas for instrument		

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
	A crane that can reach all working	A suite of modern cranes to		
	deck areas and that is capable of	handle heavier and larger		
	offloading vans and equipment	equipment than at present: (1)		
	weighing up to 20,000 lbs to a pier	to reach all working deck areas		
	or vehicle in port is desirable. This	and offload vans and heavy		
	will generally mean being able to	equipment up to 20,000 lbs; (2)		
	reach approximately 20 feet beyond	articulated to work close to deck		
	one side of the ship (usually	and water surface; (3) to handle		
	starboard) with the design weight.	overside loads up to 5,000 lbs,		
	At least one crane should be able to	30 ft from side and up to 10,000		
	deploy buoys and other heavy	lbs closer to side; (4) overside		
	equipment weighing up to 10,000	cranes to have servo controls		
	lbs up to 12 feet over the starboard	and motion compensation; (5)		
	side at sea in sea state 4.	usable as overside cable		
		fairleads at sea.		
	One or two smaller cranes,			
	articulated for work with weights up	Ship to be capable of carrying		
	to 4,000 lbs at deck level and at the			
	sea surface, with installation	purposes such as deploying and		
	locations forward, amidships, and	towing side scanning sonars,		
	aft should be provided.	photo and video devices,		

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
Frames	The Stern Frame should be designed	Various frames and other		
	for a dynamic safe working load of	handling gear and more versatile		
	30,000 lb through its full range of	than present to accommodate		
	motion, and it must structurally	wire, cable and free launched		
	engineered to handle 1.5 times the	arrays. Matched to work with		
	breaking strength of cables up to	winch and crane locations but		
	one inch, such as the tether for	able to be relocated as		
	large ROV systems (up to 120,000	necessary.		
	Ibs breaking strength). The stern A-			
	frame should have a 15-ft minimum	Stern A-frame to have 20-ft		
	horizontal and 25-ft vertical	minimum horizontal and 30-ft		
	clearance from the attachment point	vertical clearance; 15-ft inboard		
	for the block to the deck. At least a	and outboard reaches; safe		
	12-ft inboard and outboard reach is	working load up to 60 tons		
	required.			
		Able to handle, deploy and		
	Side weight handling appliances or	retrieve very long, large-		
	frames should be designed to	diameter piston corer up to 50 m		
	handle the loads for piston coring	length, 15 tons weight and 60		
	(e.g. 9/16 inch 3 x 19 wire) and	ton pullout tension. Variable		
	have a safe working load of at least	configurations ranging from a		
	20,000 lbs. Multiple locations and/or			
	multiple devices should be provided	platform.		
	that will facilitate deploying coring			
	equipment, equipment from either	Provision to carry additional		
	side, and from the bow area.	overside handling rigs along		
	Portable weight handling appliances	working decks from bow to		
	should be located to work with	stern. (See also Multichannel		
	winch and crane locations, but be	Seismics)		
	able to be relocated as necessary.			
	The design of frames and other			
	weight handling equipment should			

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
Towing	The ship should be capable of	Capable of towing large scientific		
	towing large scientific packages up	packages up to 10,000 lbs		
	to 10,000 lbs tension at 6 knots,	tension at 6-knots and 25, 000		
	and 25,000 lbs at 4 knots. Winch	lbs at 2.5 knots in sea state 5,		
	control should allow for fine control	35-knot wind, and 3-knot		
	$(\pm 0.1 \text{ meters/min})$ at full load and	current.		
	all speeds. Winches should be			
	capable of sustaining towing			
Science working space	<u>ces</u>			
Working deck	Stern working area - 1,500 sq ft	Spacious fantail area – 3,000 sq		
	minimum aft of deck houses open	ft minimum with contiguous		
	as possible. Contiguous waist work	work area along one side 12 X		
	area along one side that provides a	50 ft minimum		
	minimum of 80 ft clear deck area.			
	Minimum 8 foot width. Room for			
	one van to be considered here. Total			
	amount of clear working area			
	available on the main deck aft			
	Deck loading should meet the	Provide for deck loading up to 1,		
	current ABS rules (i.e. designed for	500 lbs/ sq ft and an aggregate		
	a 12 foot head or 767 lbs/sq ft) and	total of 100 tons		
	provide a minimum aggregate total			
	of 60 tons on the main working			
	deck. Point loading for some specific			
	large items (such as vans and			
	winches) should be evaluated in the			
	deck design since these may			
	All working areas should provide 1"-	Oversize holddowns on 2-ft		
	8NC (SAE National Coarse Thread)	centers. Highly flexible to		
	threaded inserts on two-foot centers	accommodate large and heavy		
	with a tolerance of $\pm 1/16''$ on	equipment. Removable		
	center. OTHER GENERAL	bulwarks. Dry working deck but		
	REQUIREMENTS INCLUDED BEYOND	not more than 7 - 10 feet above		

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
	A clear foredeck area should be	Usable clear foredeck area to		
	capable of accommodating small,	accommodate specialized towers		
	specialized towers, booms, and	and booms extending beyond		
	other sampling equipment as much	bow wave		
	as possible. Providing tie down			
	sockets, power, water, and data			
	connections will facilitate flexible			
	Additional deck areas should be	All working decks accessible for		
	provided with the means for flexible	power, water, air, and data and		
	and effective installation of	voice communication ports		
	incubators, vans, workboats, and			
	temporary equipment. (See relevant			
	SMRs below for details)			
	All working decks should be			
	equipped with easily accessible			
	power, fresh and seawater, air, data			
	ports, and voice communication			
	systems. Adequate flow of ambient			
	temperature seawater for incubators			
	should be available on decks			
	supporting the installation of			
	incubators.			
	All working decks need to be			
	covered by direct visibility and/or			

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
Laboratories	The majority of the lab space should	Approximately 4, 000 sq ft of		
	be located in one or two large lab(s)	laboratory space including: Main		
	that can be reconfigured,	Lab area (2,000 sq ft) flexible for		
	partitioned, and adapted to various	frequent subdivision providing		
	uses to allow for maximum	smaller specialized labs		
	flexibility. This flexibility is an			
	important design criterion. Total			
	lab space should be approximately			
	Main (dry) lab area (1,000 sq ft)	Hydro Lab (300 sq ft) and Wet		
	designed to be flexible for frequent	Lab (400 sq ft) both located		
	subdivision;	contiguous to sampling areas;		
		Bio-Chem Analytical Lab (300 sq		
		ft); Electronics/Computer Lab		
		and associated users space (600		
	Separate wet lab/hydro lab (400 sq	Darkroom (150 sq ft); climate-		
	ft) located contiguous to sampling	controlled chamber (100 sq ft),		
	areas;	and freezer (100 sq ft).		
	An electronics/computer lab (300 sq	Labs should be located so than		
	ft);	none serve as general		
		passageways. Access between		
	A separate electronics repair	Labs, offices and storage to be		
	shop/work space for resident	served by a man-rated elevator		
	technicians;	having clear inside dimensions of		
		approximately 3 ft by 4 ft.		
	High bay/hanger space for multiple	Labs to be fabricated using		
	purposes adjacent to the aft main	uncontaminated and "clean"		
	deck;	materials and constructed to be		
		maintained as such. Furnishings,		
		HVAC, doors, hatches, cable		
		runs, and fittings to be planned		

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
	Climate controlled work space or	Fume hoods to be installed		
	chamber (approx.100 sq ft) &	permanently in Wet Lab and		
	Refrigerator/Freezer space (100sf)	Analytical Lab. Main Lab shall		
		have provision to temporary		
		installation of fume hoods.		
		Cabinetry shall be high-grade		
		laboratory quality including		
	SMR's contain separate sections for	Heating, ventilation, and air		
	Lab layout & construction, electrical,	conditioning (HVAC) appropriate		
	water and air requirements with a	to laboratories, vans, and other		
	lot of detail. Electrical: 75-100	science spaces being served.		
	amps 110 VAC single phase, 50	Laboratories shall maintain		
	amps 208/230 VAC 3 phase readily	temperature 70- 75° F, 50%		
	available, 480 VAC 3-phase	relative humidity, and 9-11 air		
	available. Clean bus with 40 volt	changes per hour. Filtered air		
	amps per square foot of lab. 1/2	provided to Analytical Lab. Each		
	bolt downs on 2 foot centers. 7.5 to	lab area to have a separate		
	8 ft of headroom. At least two sink	electrical circuit on a clean but		
	locations in wet lab, four in main	with continuous delivery		
	lab. Two locations for fume hoods	capability of at least 40-volt		
	in main lab, one in wet lab.	amperes per square foot of lab		
	Adequate supply of 18 mega-ohm	deck area. Labs to be furnished		
	water. 100psi ship's service air.	with 110 v and 220 v AC. Total		
		estimated laboratory power		
		demand is 100 KVA.		

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
Vans	Carry two standardized 8 ft by 20 ft portable deck vans and the capability to carry up to two additional portable, possibly non- standard size, vans (500 sq ft total); Electrical and other ships services to vans specified.	To carry four standardized 8 ft by 20 ft portable vans which may be laboratory, berthing, storage, or other specialized use. Hookup provision for power, HVAC, fresh water uncontaminated sea water, compressed air, drains, communications, data and shipboard monitoring systems. Van access direct to ship		
Storage	Approximately 5,000 cubic feet of storage space that could also be used as shop or workspace when needed would be desirable.	Total of 20,000 cubic ft of scientific storage accessible to labs by elevator and weatherdeck hatch(es). Half to include suitable shelving, racks,		
Science load	Variable science load should be 200 LT (desirable), 100 LT minimum. 5% service life allowance for growth in light ship weight.			
Workboats	At least one 16-ft or larger inflatable boat located for ease of launching and recovery. Capability to carry science workboat 25-30 ft LOA. Workboats may have to be in addition to required rescue boats.	At least one and preferably two 16-ft inflatable (or semi-rigid) boats located for ease of launching and recovery. A scientific work boat 25 – 30 ft LOA specially fitted out for supplemental operation at sea including collecting, instrumentation, and wide-angle signal measurement. 12-hour endurance including both manned accommodations and		

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
Masts	Main mast and second lightweight			
	and removable mast capable of			
	supporting science packages			
	weighing between 30 & 100lbs.			
On deck incubations	Location with unobstructed sunlight			
	and access to reliable 50 gals/min			
	flow of water at ambient near			
	surface seawater tempurature (<1			
	degree C above ambient).			
Marine mammal &	Area for two to three observers with			
bird observations	a combined 180 degree obstruction			
	free view forward of the beam.			
Science and shipboard				
Navigation	Best available navigation (real-time	Global Positioning System (GPS)		
		with appropriate interfaces to		
	3-axis GPS) capability shall be	data systems and ship control		
		processors:		
	to data systems and ship control	Short baseline acoustic		
		navigation system.		
	data, dynamic positioning, and			
	automatic computer steering and	Selected vessels should be		
	speed control. Back-ups and	equipped with "dynamic		
	redundant systems should be	positioning" capability to		
	provided to ensure continuous	maintain the ship on station or		
	coverage.	on a trackline to the		
		stationkeeping specifications		
	Best available electronic charting	under automatic control and		
	(e.g., ECDIS) and bridge	appropriate navigational		
	management system shall be	reference.		
	provided.			

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
Data network and	A modern and expandable data	Data transmission, monitoring		
onboard computing	network should be integrated into	and recording system available		
	the design for all spaces on the	throughout science spaces		
	research vessel including labs, deck	including vans and key working		
	areas, instrument mounting spaces,	areas.		
	bridge, machinery spaces, common			
	areas, and staterooms. Wireless			
	networks should be available in			
	laboratories. Connecting			
	cables/wiring should be installed to			
Real time acquisition	A well designed "system" for real			
	time collection of data from			
	permanently installed sensors and			
	equipment as well as provision for			
	temporarily installed sensors and			
	equipment that allows for archiving,			
	display, distribution, and application			
	of this data for a variety of scientific			
	and ship board purposes should be			
	designed and specified by a group of			
	knowledgeable science users and			

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
Comms – internal	Internal communication system providing high quality voice communications throughout all science spaces, working, and berthing areas should be provided. Point to point and all-call capabilities are required such as 21mc and 1mc systems. A sound powered phone emergency system should be included. All staterooms should have phones	Internal communication system providing high-quality voice communications throughout all science spaces and working areas. Closed-circuit television monitoring and recording of all working areas including subsurface performance of equipment and its handling. Monitors for all ship control,	Values	

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
Comms – external	Reliable voice channels for	Reliable voice channels for		
	continuous communications to shore	continuous communications to		
	stations (including home	shore stations (including home		
	laboratories), other ships, boats,	laboratories), other ships, boats		
	and aircraft should be provided. This	and aircraft. This includes		
	includes satellite, cellular, VHF, HF,	satellite, VHF and UHF.		
	and UHF (best available and			
	required by regulations).	Facsimile communications to		
		transmit high-speed graphics		
	Voice and data communications	and hard-copy text on		
	should be provided through the best	regular schedules.		
	available systems (currently cellular			
	(near shore) and satellite based	High-speed data communications		
	systems). Plans should include high-			
	speed data (best current capability)	and other ships on		
	communication links to shore labs	a continuous basis.		
	and other ships on a continuous			
	basis; data transmission systems			
	should be connected to internal			
	networks and phone systems to			
	provide accountable calling, network			
	(internet), and email access.			
	Transmission of video, photographs,			
	and large data sets, as well as			

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
Underway data	The infrastructure and space for			
collection & sampling	continuous underway sampling and			
	data collection for as many ocean			
	and atmospheric parameters as			
	possible should be included in all			
	design phases and construction			
	details. This would include, but not			
	be limited to surface (or near			
	surface) seawater temperature,			
	salinity, fluorescence, chemical, and			
	biological measurements. Provisions			
	for adequate continuous flow of			
	seawater in all underway conditions			
	to all permanently installed and			
	temporary sensors should be			
	included. System design including			
	proper location for equipment,			
	pump materials and design, de-			
	bubblers, screening, intakes, and			
	plumbing materials that ensure			
	accurate measurements should be			
	made based on current advice from			
	science experts.			
	Provisions for sampling clean,			
	uncontaminated, and ambient			

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
Acoustic systems	Each ship should be as acoustically	Ship to be as acoustically quiet		
	quiet as is feasible. Special	as practicable in the choice of all		
	consideration should be given to	shipboard systems and their		
	machinery noise isolation, including	location and installation. Design		
	heating and ventilation. Propeller(s)	target of operationally quiet		
	are to be designed for minimal	noise levels at 12 knots cruising		
	cavitation, and hull form should	in sea state 5 at the following		
	attempt to minimize bubble sweep	frequency ranges:		
	down.	 4 hz – 500 hz seismic 		
	Installed systems should be based	 3 kHz – 500 kHz echo sounding 		
	on the currently best available	and acoustic navigation		
	systems and should include the	 75 kHz – 300 kHz Doppler 		
	following types of systems:	Current Profiling		
	- 12 kHz single beam deep-sea echo	Ship to have 12 kHz, 3.5 kHz		
	sounder that meets the (IHO)	echo sounding systems and		
	standards for accuracy.	provision for additional systems.		
	- Sub-bottom profiler operating in	Phased array, very wide		
	the 2 to 8 kHz frequency range with	multibeam precision echo		
	an array suitable for use with a 10	sounding system (equivalent to		
	kW transmitter. Allocate transducer	"Sea Beam").		
	space for a parametric sub-bottom	Transducers appropriate to		
	profiler.	dynamic positioning system.		
	- A multi-beam swath mapping	Transducer Wells (20") one		
	sonar system capable of one degree	located forward and two		
	or better resolution at full ocean	athwartships. Large pressurized		
	depth. The system should be	sea chest (4ft x 8 ft) to be		
	capable of obtaining reasonable	located at optimum acoustic		
	data at depths as shallow as 50	location for at-sea installation		
	meters.	and servicing of transducers and		
	- ADCP system with transducer wells	transponders.		
	for more than one frequency (i.e.			
	38, 75 or 150 kHz); hull mounted			
	with a complimed conchility of 1000			

Parameter	Capability or Characteristic - 2003 Ocean Class SMRs	Capability or Characteristic - 1989 Large High-Endurance	New Global Values	Committee Member Comment
Multichannel	Included as a portable towed	All vessels shall have the		
Seismics	system in Project science system	capability to carry out		
	installation.	multichannel seismic profiling		
		(MCS) surveys using large sound		
		sources (airguns) and		
		longstreamers (3-6 km).		
		Selected vessels shall have		
		compressors capable of		
		generating 2000 SCFM of air at		
		2500 psi permanently installed.		
		The compressors and associated		
		high-pressure plumbing should		
		be installed in or adjoining below-		
		deck machinery spaces.		
		Refer to the appendix on special		
		characteristics of equipment and		
Satellite Monitoring	Included as part of	Carry transponding and receiving		
	communications/masts sections	equipment including antenna to		
		interrogate and receive satellite		
		readouts of environmental		
		remote sensing.		

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
Visiting science systems	2003 Ocean Class SMRs Provisions are required for installing equipment that is brought on board occasionally such as SeaSoar, MOCNESS, MR1, Deep Tow, towed sonars, portable seismic reflection systems, gravimeters, and specialized ADCPs. Taught and slack tether ROVs, AUVs, remotely piloted aircraft, and other systems should also be readily accommodated. The types of equipment will need to be defined during concept and preliminary design cycles, and as much flexibility as possible should be designed. Generally providing power sources, deck space,		Values	Comment
	mounting locations, and data connections will accommodate most needs, however, in some cases it may be necessary to provide fuel, hydraulic power or other services. Provision for multiple simultaneous connections should be possible for 480V 3-phase, 208 – 230V 3-phase and single phase, and 110V single phase with up to 50 amps service			

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
Discharges	All liquid discharges from sinks,			
	deck drains, sewage treatment			
	systems, cooling systems, ballast			
	pumps, fire fighting pumps, and			
	other shipboard or science systems			
	should be on the port side, with			
	tanks capable of holding normal			
	discharges for a minimum of 24			
	hours. Design should allow for zero			
	discharges on the starboard side,			
	including deck drains, when required			
	during normal operations.			
	A well thought out waste			
	management plan should be			
	developed during the design phases			
	so that these vessels can prevent,			
	control, or minimize all discharge of			
Construction, operation				
Maintainability	Starting with the earliest elements			
	of the design cycle, the ability to			
	maintain, repair, and overhaul these			
	vessels, and the installed machinery			
	and systems efficiently and			
	effectively with a small crew should			
	be a high priority. Specifications			
	for equipment should require all			
	equipment vendors to provide parts			
	lists, manuals, and maintenance			
	procedures in electronic form for			
	integration with a Computerized			
	Maintenance Management System			

Parameter	Capability or Characteristic -	Capability or Characteristic -	New Global	Committee Member
	2003 Ocean Class SMRs	1989 Large High-Endurance	Values	Comment
Operability	Design should ensure that the			
	vessel could be effectively and			
	safely operated in support of science			
	by a well trained, but relatively			
	small crew complement. The			
	regional conditions, available ports,			
	and shore side services should be			
	considered during the design			
	process. The impact of draft, sail			
	area, layout, and other features of			
	the design on the ability to operate			
	the vessel during normal science			
	operations should be evaluated by			
	experienced operators, technicians,			
Life cycle costs	A thorough evaluation of			
	construction costs, outfitting costs,			
	annual operating costs, and long-			
	term maintenance costs should be			
	conducted during the design cycle in			
	order to determine the impact of			
	design features on the total life			
	cycle costs. Economy of operation			
	has been a big benefit of the smaller			
	classes of research vessels, and this			
	aspect should be retained as much			
Regulatory issues	The impact of USCG and			
	international regulations on the			
	design and outfitting of these			
	vessels should be carefully			