Operational Experience Bio-Fuels and Lubricants

Dennis Donahue NOAA-GLERL Marine Superintendent

NOAA - GLERL

Green Ship Initiative Focus Areas

- Alternative Fuels
- Provide Operational Test Platforms
- Platform Life Cycle
- Emissions
- Renewable Products
- Overboard Discharge
- Energy Efficiency
- Emerging Technologies
- Best Management Practices

Bio-based Fuels, Oils and Lubricants

B100 Biodiesel

United States Department of Commerce

Federal Energy Management Program

Office of the Federal Environmental Executive

Promoting sustainable environmental stewardship throughout the federal government

B100 Operational Experience

11 years experience

LMFS – 160,000 gallons annually

Cost savings – 20 to 40%

OEM's – participate, validate

Crew assessment – "Non-issue", " Prefer B100"

Green Ship Working Group - 1M + gallons (B100) annually

Commercially viable – tug, research, fishing and tour-boat

2010-11 effort to transition expertise

- Federal Green Fleet Working Group (Non-tactical)
- MARAD
- Army Corps of Engineers

Typical Biodiesel Issues

Cost

OEM Warranties

Power Reduction

Cold Flow Properties

Material Compatibility

Microbial Growth

Filter Plugging

Lube oil Dilution

Water Separation

Storage Stability

Terminology

Feedstock Variables

Tangible Benefits

Measurable Results

Logistics

Liability / Risk

Organizational Priorities

Social /Political Issues

Corporate Targets / Support

Initiative Strategy

Conventional Test Methodology

- Stabilize the process
- Maintain process parameters
- Introduce one variable (Fuel)
- Measure process response

"Measure of Equivalency"

LMFS Test Methodology

- Optimize the process
- Adjust Process variables to reflect what is known about the test material
- Monitor process controls that could be impacted by unknown attributes
- Measure changes to output, process and effort
- Readjust based upon experience

"Measure of Effort for Optimum Results"

Best Management Practices

- Fuel management
 - Inventory turns
 - Incoming QC
 - Storage conditions
 - Temperature control
- Material compatibility
- Filtration
 - Particulate
 - Water
 - Polishing
- Process
 - Pumps
 - Injectors
 - Temperature control

- Measures
 - Repair and maintenance
 - Failure Analysis
 - QA/QC
 - Emissions
 - Performance

B100 Biodiesel Advantages

Lower Emissions
Lower Environmental Impact
Renewable Energy Source
Improved Health and Safety

- ✓ Improved Engine Performance
- ✓ Reduced System Maintenance
- ✓ Lower Cost

Typical Emissions Results

2005 Survey

Port /starboard full load tests – 4 vessels

Cummins 903, Detroit 12V71, Detroit 8-92, Cat 3508

Broad range in engine age, condition and time on B100

Averaged B100 Emissions Reductions as Compared to #2 Petroleum Diesel

Total Unburned Hydrocarbons	-77%
Carbon Monoxide	-48%
Particulate Matter	-59%
Nox	-7%
Sulfates	-74%
PAH	-66%

Crew Exposure to Exhaust Plume

Health and Safety

Higher flash point (125F vs. 300F) Reduced carcinogens Less offensive odor – seasickness

Crew Health

Tier 1 Health Effect Data

Fuel Comparison

Quality Soy B100 meets or exceeds engine OEM specifications

- Higher Cetane (53 vs. 40)
- Significantly higher lubricity compared to ULSD (7500 vs. 1800)
- Higher viscosity (5.5 vs. 1.8) better injector pressures
- Cleaner incoming and system fuel

System Requirements (fuel + process)

- Pour point cold flow
- Water management
- Particle filtration
- Material compatibility

Need for long term engine data

Filtration of Solids

Best Management Practices

Incoming QC

- Tanker filtration 10 micron
- Water content
- Free glycerin

Improve filtration

- Increase retention time (3x)
- Vacuum-type units
- Filter media selection
- Spent media analysis

Temperature management

- Minimize thermal shock
- Fuel to fuel heat exchangers

Bacterial growth

- Maximize tank turns
- Minimize water

System cleaning

Varnish, wax coatings

Cooperative R &D Projects

Equipment

Media

Measurements - Optics

B100 Detergency

#2 Diesel 4 Years B100 1 Tank Turn B100 3 Tank Turns B100 One year

Tank Bottom Samples

Best Management Practices and B100

Results

- 5 micron primary filters
- No secondary filters
- No manual tank cleaning at 5 years
- No injector replacement
- No fuel pump failures

Monitoring / R & D

OEM – injector replacement program

Annual injector testing

OEM – fuel pump evaluation program

Component Failure Analysis

Engine OEM's validate performance

Winter Operations - Fuel Heaters

Maintain 70° F prior to filters Heater R &D

- Electric / fuel
- Water jacket / fuel
- Return fuel / feed

Measurement R&D

Material Compatibility

System Approach

- •Fuel system components
 - •B100 will accelerate failing materials
- •Focus on field repairs and materials
 - •OEM failures are rare
- •Elevate housekeeping and maintenance standards
- •Review adjacent and support systems

Industry Partners

- Allied industries
- Material processing plants

Technology Transfer Green Ship Working Group - 2002

150 + Vessels

1M+ gallons annually

Equipment development

Shared expertise

Logistic support

Broad spectrum of vessels

- Government
- Research
- Passenger
- Fishing
- Tug / Transport
- Utility / dredge

Technology Transfer Federal Green Fleet Working Group - 2010

Multi- agency
Shared interest in alternative fuels
Consolidate experience / resources
Establish cooperative projects
Establish protocols
Advance renewable technologies

Army Corps of Engineers - 2011

- B100 Feasibility Study
- Package NOAA experience
- Emphasis on engine loading

MARAD - 2011

- 2nd Generation Biodiesel
- T-AGOS platform trials
- Emphasis on protocols

Implementation Process

1.Education

- Benefits of Biodiesel
- Myths and Misinformation
- Similarities and Differences
- Areas of Concern
- Implementation Plan
- Monitoring Plan
- Response Plan
- Measures and conclusions

2.Plant Assessment

- Resources and personnel
- Tank
- Residual fuel condition
- Distribution
- Filtration
- Injection Pumps
- Engine External condition
- Engine Performance issues
- Exhaust measures

3. Implementation Plan

- Address mechanical issues / impact
- Consider process improvements /impact
- Biodiesel supplier evaluation
- Training and expectations
- Measures and alternatives

4. Trial

- Feedback Loop
- Measures
- Conclusions
- Next steps

5. Communication

- Feedback
 - Lessons Learned
 - Industry
 - Working Group
 - Partnerships

NOAA Army Corp of Engineers

The second

2011 Technology Transfer Project

PATHFINDER - St. Louis

DB-5 – Washington D.C.

RACCOON - San Francisco

DONLON - Cleveland

NOAA – Army Corp of Engineers

2011 Technology Transfer Project – B100

Focus

Applied GLERL methodology

27,000 gallons

4 Locations

6 Month duration

Emissions testing

Engine load testing

Fuel usage monitoring

Results

- Operators and crew prefer B100
- No adverse impacts
- Availability and quality of fuel confirmed
- No cold flow issues to date
- Material compatibility issue on 1 vessel (hoses)
- No observed microbial growth, lube oil dilution, water separation, and storage stability
- No filter plugging
- No issue with switch fueling

NOAA – Army Corp of Engineers - CO₂ Preliminary Results

- Higher or equal for biodiesel at low RPM
- Lower for biodiesel at mid RPM
- Lower for biodiesel at high RPM

MARAD – 2nd Generation Biodiesel

Large scale trial of HR-D (50% petroleum / 50% algae)

Navy test protocols

Trial translates to large Research Vessel platforms

- 4 Caterpillar D398 engines
- 450 Hours
- 10,000 gallons

Potential test of higher bio content

MARAD – 2nd Generation Biodiesel

Emissions Results – Preliminary

NOx9-10% reduction

CO 16-18% reduction

CO24-5 % reduction

– PM 25% reduction

Engine Diagnostics

Turbo charger blades

Cylinder heads

Pistons

Questions?

dennis.donahue@noaa.gov

