

Shipboard Energy

AND

Emissions Management

QUANTIFICATION • LIFE CYCLE ANALYSIS VESSELS • OFFICES • FACILITIES • TERMINALS

UNOLS VESSEL ENERGY MANAGEMENT Presented By:

Mike Gaffney, C.E.M., C.E.A.

Certified Energy Manager and Auditor USCG Licensed Chief Engineer Executive VP, Engineering Alaris Companies

MARITIME ENERGY MANAGEMENT

Method of quantifying and reducing energy consumption and cost and associated environmental footprint

Presentation Overview

Three Components of Energy Management

- Baseline of Energy Consumption, Cost, and Emissions
- Energy Conservation Measures (ECMs)
- Shipboard Energy Efficiency Plan (SEEMP)

How Are Energy Savings Achieved?

BASELINE ENERGY USAGE AND COST LOSSES AND USEFUL WORK

MEASURE ENERGY CONSUMPTIO N OF EQUIPMENT/ SYSTEMS

Alaris' EQUATE Energy Modeling Program

NEW GENERATION SHIPBOARD ENERGY AND EMISSIONS MANAGEMENT

	USCGC Liberty May 201		
Monthly Shorepower Cons	umption Summary		
Total kWh Consumed	18,015 kWh		
Total CO2(e)	15.9 MT		
Maximum 15 Minute Integral Demand*	53.4 kW		
Time of Occurance	Mon, May 2, 0215		
Billing Demand†	67.1 kW		
Lay Days	21.7 Days		
CO2(e) per Lay Day	0.731 MT/Day		
kWh per Lay Day	829.9 kWh/Day		
Cost per Lay Day	\$83.24 \$/Day		
Average Power	24.1 kW		
Average Power Factor	69.4%		
Lowest Power Factor	21.8%		
Highest Power Factor	97.1%		

Estimated Month	ly Rill	
Basic Customer Charge	\$	99.24
Energy Charges	\$	1,067.92
Demand Charges	\$	739.06
TOTAL ESTIMATED BILL	\$	1,806.97
Monthly Bill Bre	0	Demand Charges 39% ic mer ge

^{*}This value is an estimate, and may be different from the actual demand value shown on the electric bill. As the Obvius DAS only records values every 15 minutes, a true rolling 15 minute demand value cannot be established in the same manner that the kilowatt-hour meter does.

⁺Billing Demand is the maximum 15 minute demand increased by 1% for each percent or fraction thereof that the average power factor is less than 95%.

Electric Bill (Rates	Effective 8-1-10)	
Basic Customer Charge	\$	99.24
Energy Charge	\$	1,066.51
Power Cost Adjustment	\$	(8.54)
Regulatory Cost Charge	\$	9.94
Demand Charge	\$	739.06

	Alaska Electric & Light Rate 24D			
Cha	arge	Description		
\$	0.0592	Peak Season kWh, Nov-May, per kWh		
\$	0.0554	Off Peak Season kWh, June-Oct, per kWh		
\$	(0.000474)	Power Cost Adj, per kWh		
\$	0.000552	Regulatory Cost Charge, per kWh		
\$	13.84	Peak Season Demand Charge, Nov-May, per kW		
\$	8.82	Off Peak Season Demand Charge, June-Oct, per kW		
\$	99.24	Customer Charge		

BASELINEDISTRIBUTION OF ENERGY COST

Energy Total Cost \$618,529

DISTRIBUTION OF ELECTRICAL ENERGY CONSUMERS

BASELINE

ENERGY COST AT THE EQUIPMENT LEVEL

CONSUMER	ENERGY	COST
A/C CHILLER NO. 1 COMPRESSOR MOTOR CLG LVL 1	115,864	\$ 29,384
DUCT HTR (DH 24) GALLEY HOOD PREHTR	45,568	\$ 11,556
HOT WATER HTR	40,634	\$ 10,305
DUCT HTR 02-75-2 DH22 PREHEATER AC2	29,638	\$ 7,516
A/C CHILL WATER CIRC PUMP NO. 1	28,308	\$ 7,179
HARBOR PUMP, LOWER	24,357	\$ 6,177
AC2 FAN COIL UNIT R02-74-2	23,700	\$ 6,010
PORT MAIN ENGINE JW HTR	22,839	\$ 5,792
STBD MAIN ENGINE JW HTR	22,839	\$ 5,792
SSDG NO. 2 JW HTR	20,889	\$ 5,298

BASELINE

ENERGY CONSERVATION MEASURES (ECMS): EVALUATE FINANCIALLY AND ENVIRONMENTALLY

INSTALL A PREMIUM EFFICIENCY MOTOR AND VFD

INITIAL INVESTMENT	\$5,660
FLANTAYTHAR SAYENIGE	\$4,582
(YR)	1.24
ROI	86%
NET PRESENT VALUE	\$44,558
CO ₂ - SAVINGS (MT)	32

ENERGY CONSERVATION MEASURES (ECMS)

Two Main Types of ECMs

- Operational: Culture and Policy Changes
- Technical: Equipment Upgrades

NEW GENERATION SHIPBOARD ENERGY AND EMISSIONS MANAGEMENT OPERATIONAL ECM

KEEP INPORT ENGINE JACKET WATER AT MINIMUM **TEMPERATURE**

OPERATIONAL ECM ADJUST SET-POINTS FOR MAX EFFICIENCY

OPERATIONAL ECM

OPERATE AT ECONOMICAL SPEED

OPERATIONAL ECM

SECURE EQUIPMENT WHEN NOT NEEDED

TECHNICAL ECM

ACCOMMODATION SPACE EXHAUST AIR ENERGY

http://www.bpequip.com/exchangers.dws

TECHNICAL ECM

Premium Efficiency Motors

TECHNICAL ECM

Utilize Heat
Pumps with
Waste heat
Recovery for
A/C and
Heating
Requirements

TECHNICAL ECM ENERGY STAR LABEL REQUIREMENTS

LED Marine Fixture

BASELINE

PROVIDES METRICS TO MEASURE IMPROVEMENT AND PERFORMANCE

	INDEX		CO ₂ INDEX
	(KWH/LAYDAY	Cost Index	- (KG
)	(\$/Layday)	CO ₂ /LAYDAY)
BEFORE EM	14,089.0	1,878.4	4.3
AFTER EM	10,485.0	1,418.4	3.2
SAVINGS FROM			
EM	3,604.0	459.9	1.1

How to Implement Vessel Energy Management

Shipboard Energy Efficiency Management Plan (SEEMP)

Four Step Ship Specific Plan:

- SEEMP Adopted by IMO MEPC 62nd session from 11 to 15 July 2011
- SEEMP requirement begins 1 Jan 2013

Energy Efficient Operational Indicator (EEOI)

- Used as a monitoring tool for SEEMP
- For ship owners and operators to be used on a voluntary basis
- Establishes benchmarks for different fleets by ship type and size

EEOI = <u>actual CO2 emission</u> performed transport work

Thank You!

