One Ocean at a Time: Green Initiatives in the Regional Class Research Vessels

Don B. Hilliard
Fleet Engineer, Oregon State University

UNOLS “Green Boats & Ports for Blue Waters” III
5 – 6 April 2016
Areas of Initiative

- Hull Form
Areas of Initiative

- Hull Form
- Propulsors
Areas of Initiative

- Hull Form
- Propulsors
- Power Plant
Areas of Initiative

- Hull Form
- Propulsors
- Power Plant
- Auxiliaries
Areas of Initiative

- Hull Form
- Propulsors
- Power Plant
- Auxiliaries
- Coatings and Lubricants

UNOLS “Green Boats & Ports for Blue Waters” III
5 – 6 April 2016
Areas of Initiative

- Hull Form
- Propulsors
- Power Plant
- Auxiliaries
- Coatings and Lubricants
- Certification
Hull Form

- Optimized by extensive computerized flow modeling

UNOLS “Green Boats & Ports for Blue Waters” III
5 – 6 April 2016
Hull Form

- Optimized by extensive computerized flow modeling
 - 30,000 model runs

UNOLS “Green Boats & Ports for Blue Waters”
5 – 6 April 2016
Hull Form

- Optimized by extensive computerized flow modeling
 - 30,000 model runs
 - Overall 10% efficiency increase from initial design
Hull Form

- Optimized by extensive computerized flow modeling
 - 30,000 model runs
 - Overall 10% efficiency increase from initial design
- Modified bulbous bow

UNOLS “Green Boats & Ports for Blue Waters”
5 – 6 April 2016
Hull Form

- Optimized by extensive computerized flow modeling
 - 30,000 model runs
 - Overall 10% efficiency increase from initial design
- Modified bulbous bow
 - Up to 6% increase in fuel efficiency at cruising speed

UNOLS “Green Boats & Ports for Blue Waters” III
5 – 6 April 2016
Hull Form

- Optimized by extensive computerized flow modeling
 - 30,000 model runs
 - Overall 10% efficiency increase from initial design
- Modified bulbous bow
 - Up to 6% increase in fuel efficiency at cruising speed
- Tapered stern
Hull Form

- Optimized by extensive computerized flow modeling
 - 30,000 model runs
 - Overall 10% efficiency increase from initial design
- Modified bulbous bow
 - Up to 6% increase in fuel efficiency at cruising speed
- Tapered stern
- Streamlined headboxes for propulsors
Propulsors

UNOLS “Green Boats & Ports for Blue Waters” III
5 – 6 April 2016
Propulsors

UNOLS “Green Boats & Ports for Blue Waters” III
5 – 6 April 2016
UNOLS “Green Boats & Ports for Blue Waters” III
5 – 6 April 2016
Propulsors

DPS-1 with “loiter” mode for increased fuel efficiency

UNOLS “Green Boats & Ports for Blue Waters” III
5 – 6 April 2016
Propulsors

- Twin 360° azimuthing primary drives
Propulsors

- Twin 360° azimuthing primary drives
- “Push/pull” design
Propulsors

- Twin 360° azimuthing primary drives
 - “Push/pull” design
 - Greater surface area
Propulsors

- Twin 360° azimuthing primary drives
 - “Push/pull” design
 - Greater surface area
 - Lower RPM

UNOLS “Green Boats & Ports for Blue Waters” III
5 – 6 April 2016
Propulsors

- Twin 360° azimuthing primary drives
 - “Push/pull” design
 - Greater surface area
 - Lower RPM

- Wake-adapted blades
Propulsors

- Twin 360° azimuthing primary drives
 - “Push/pull” design
 - Greater surface area
 - Lower RPM

- Wake-adapted blades
 - Physical model test showed zero cavitation at 11 knots
Propulsors

- Retractable 360° azimuthing bow thruster
Propulsors

- Retractable 360° azimuthing bow thruster
 - Better efficiency for field maneuvering
Propulsors

- Retractable 360° azimuthing bow thruster
 - Better efficiency for field maneuvering
 - Primary bow thruster for science operations
Propulsors

- Flush 360° azimuthing bow thruster
Propulsors

- Flush 360° azimuthing bow thruster
 - Minimal clearance for shallow-water and docking maneuvers
Propulsors

- Flush 360° azimuthing bow thruster
 - Minimal clearance for shallow-water and docking maneuvers
 - May be used for science ops in heavy seas or where URN is not a concern
Power Plant

- Variable speed/frequency power generation
Power Plant

- Variable speed/frequency power generation
- Integrated DC bus
Power Plant

- Variable speed/frequency power generation
 - Integrated DC bus
 - Reduced conversion loss
Power Plant

- Variable speed/frequency power generation
 - Integrated DC bus
 - Reduced conversion loss
 - Reduced generation loss
Power Plant

- Variable speed/frequency power generation
 - Integrated DC bus
 - Reduced conversion loss
 - Reduced generation loss
- Real-time fuel monitoring
Power Plant

- Variable speed/frequency power generation
 - Integrated DC bus
 - Reduced conversion loss
 - Reduced generation loss
- Real-time fuel monitoring
 - Engine-specific efficiency
Power Plant

- Variable speed/frequency power generation
 - Integrated DC bus
 - Reduced conversion loss
 - Reduced generation loss
- Real-time fuel monitoring
 - Engine-specific efficiency
 - Vessel efficiency
Power Plant

![Graph showing fuel consumption vs. engine loading for different speeds.](image)

UNOLS “Green Boats & Ports for Blue Waters” III
5 – 6 April 2016
Auxiliary Systems

- Waste Heat Recovery as heating source for
 - Distillation
Auxiliary Systems

- Waste Heat Recovery as heating source for
 - Distillation
 - Potable water heating
Auxiliary Systems

- Waste Heat Recovery as heating source for
 - Distillation
 - Potable water heating
 - HVAC heating
Auxiliary Systems

- Variable Speed fan and pump motors
Auxiliary Systems

- Variable Speed fan and pump motors
- LED lighting throughout, dimmable where appropriate (labs and accommodation areas)
Auxiliary Systems

- Variable Speed fan and pump motors
- LED lighting throughout, dimmable where appropriate (labs and accommodation spaces)
- Oil/water separation to <5ppm

UNOLS “Green Boats & Ports for Blue Waters” III
5 – 6 April 2016
Auxiliary Systems

- Variable Speed fan and pump motors
- LED lighting throughout, dimmable where appropriate (labs and accommodation areas)
- Oil/water separation to <5ppm
- Biologic, non-chlorinating MSD
Auxiliary Systems

- Variable Speed fan and pump motors
- LED lighting throughout, dimmable where appropriate (labs and accommodation areas)
- Oil/water separation to <5ppm
- Biologic, non-chlorinating MSD
- Shore power sized for all expected loads
Coatings and Lubricants

- Advanced fluoropolymer foul-release for underwater hull
Coatings and Lubricants

- Advanced fluoropolymer foul-release for underwater hull
- Non-biocidal
Coatings and Lubricants

- Advanced fluoropolymer foul-release for underwater hull
 - Non-biocidal
 - Non-ablative
Coatings and Lubricants

- Advanced fluoropolymer foul-release for underwater hull
 - Non-biocidal
 - Non-ablative
 - Low friction adds 1-3% efficiency
Coatings and Lubricants

- Advanced fluoropolymer foul-release for underwater hull
 - Non-biocidal
 - Non-ablative
 - Low friction adds 1-3% efficiency
 - Growth sloughs at <4 knots
Coatings and Lubricants

- Impressed-Current hull protection
Coatings and Lubricants

- Impressed-Current hull protection
- Aluminum anodes for tank and appendage protection
Coatings and Lubricants

- Impressed-Current hull protection

- Aluminum anodes for tank and appendage protection
 - Lower toxicity than zinc with the same or better performance
Coatings and Lubricants

- Environmentally Acceptable Lubricants
Coatings and Lubricants

- Environmentally Acceptable Lubricants
- All propulsion (oil-to-sea interfaces)
Coatings and Lubricants

- Environmentally Acceptable Lubricants
 - All propulsion (oil-to-sea interfaces)
 - All deck machinery
Coatings and Lubricants

- Environmentally Acceptable Lubricants
 - All propulsion (oil-to-sea interfaces)
 - All deck machinery
- Meets or exceeds present EPA VGP requirements
Certifications

- Green Marine/Alliance Verte consortium
Certifications

- Green Marine/Alliance Verte consortium
- Non-profit
Certifications

- Green Marine/Alliance Verte consortium
 - Non-profit
 - Publicly available results
Certifications

- Green Marine/Alliance Verte consortium
 - Non-profit
 - Publicly available results

- International Association of Ports and Harbours
Certifications

- Green Marine/Alliance Verte consortium
 - Non-profit
 - Publicly available results

- International Association of Ports and Harbours
 - Potential savings in commercial ports
http://ceoas.oregonstate.edu/ships/rcrv/

All items presented are contingent on Federal funding for FY 2017 and beyond. Any equipment pictured is for illustration purposes only and may not reflect final installations.

UNOLS “Green Boats & Ports for Blue Waters” III
5 – 6 April 2016