Rethinking the Power of Electric Boats
Eboats for Rowing Market

Specific design parameters:

15 mph
Minimum wake
Safety launch
Operated on calm water - often reservoirs
Eboat Development

Gives us a look at how to approach sustainable tech integration

Hull Form - Cat to Tri

Battery Storage

Cavitation and Ventilation

Spray plate and spray rail

Corrosion and electrolysis
Benefits of Eboat Experience

Low noise permits a rowing coach to hear the crew
Eboats and Nature

Early Testing yields unexpected insight
Lesson Learned - Beer is Louder than Eboat
Most Common Eboat
Most Uncommon Eboat
Deep Blue Hybrid – Full System Architecture

Multi Voltage System:
- 345 vdc
- 24 vdc
- 240/120vac
- 12 vdc
- Data bus

Example config:
- Twin Deep Blue 80i propulsion systems
- 51.2 kWh HV DC battery capacity
- Twin 20 kW HV DC generators
- 5.4 kWh LV DC battery capacity
Deep Blue Hybrid – Voltage Hub View

Boat

Use

Drivetrain

HV DC

Generator

HV DC System

345V

A/C, Cooking, …

120/240V AC

Shore Power

Navigation, Lighting,…

24V DC

Seakeep

DC/AC

HV DC

System

345V

Deep Blue HV batteries

Deep Blue HV batteries

DC/DC

AC/DC

Solar Charger

POWER 26-104

DC/DC

24V

A/C, Cooking, …

120/240V AC

Shore Power

Navigation, Lighting,…

24V DC

Seakeep

DC/AC
Thinking Eboat v Petroboat

Operations

Capabilities

Equipment

Large but limited reservoir of power

Slow turning, high static thrust vs high rpm

Power collection underway
Turnkey is the Key

There will be continuous fine tuning of hull forms etc what is needed is a concerted effort to make marine sustainability plug and play, easy to use, Turnkey, so you don’t have to be an expert to employ the technology.
“NAVY Shells Eboat”
Human Powered Shells
Pre-Test Configuration
Damage Assessment
An Eboat Success Story