Optimizing IP Services on Inmarsat Fleet Broadband (FB) Systems

Dual FB installations onboard UNOLS vessels.

UNOLS – RVTEC
Texas A&M University
Nov. 19th. 2013
- Fleet Broadband background
- Available services
- The need to optimize bandwidth
- Optimization of Single LAN Connection
- Dual FB configuration
- High throughput capacity
Fleet Broadband Global Coverage

This map depicts Inmarsat's expectations of coverage post repositioning of its I-4 satellites. This map does not represent a guarantee of service. The availability of service at the edge of coverage areas fluctuates depending on various conditions.

.com/coverage
FB Spot beams maps, dynamic bandwidth

- Small spot beams area
- Independent Capacity
- Dynamic allocation to where capacity is required.
FB 500 Spec:

ADU: 35 Lbs / 60 cm
Speed: 432/432 kbps
Streaming: up to 256 kbps
4 independent IP networks
Multi—voice: up to 9 voice lines.
Integral DHCP/NAT router
Integrated PBX

Capacity: 4.8 GBytes per day
In each direction.
c.6 FB: one device, 3 networks

(1) Single FB Terminal with single SIM card – starts with STD-IP connection. With other simultaneous connections from different locations onboard.

(2) Crew can begin Browsing or Email or Interactive access sharing this connection.

(3) The Captain receives a Telephone calls, Superintendent can call from HQ, Officer can make call to suppliers

(4) Engineer from Engine Room, liaises with expert on shore check the parts or fittings – so starts a simultaneous streaming channel dedicated for the camera

(5) Meanwhile, your file exchange server sets up another simultaneous connection dedicated for its batch FTP to HQ

(6) A crew member realises he needs to call his wife and sets up a VOIP call on another dedicated connection.

(7) Crew are also sending/Receiving SMS

Legacy CS
Traditional

Interactive Best Effort
Standard

Batch High QOS
Special
Onboard - IP Network configuration

- Each Device has its own Public IP Address
- Devices connected to Different Interfaces on the User Terminal
- FB 500
- GGSN (Gateway GPRS Support Node)
Why optimize

• Ever increasing volume of science data volumes.
• Bandwidth demanding apps:
 – Personal and vessel operations – Skype, video streaming, electronic charts, engine monitoring, remote presence ...
 ➡️ Congestion on the WAN link
• Budget cuts – reduced allowances for additional bandwidth
Optimizer Features

Bandwidth Management and Quality of Service (QOS)
Application-based priority assignments
Custom port-based application definition
Compression
Caching
Configured protocols:
Web
Email
FTP
DNS
Network Authentication
Terminal Services
SIP

Administration
Web-based interface
Traffic and performance monitoring
Event logging
SNMP support
Secure remote administration
Reporting
Optimizer Features

Features

Link Balancing
WAN and Internet connection link balancing
Inbound link balancing
Automated link failover and failback
Link health monitoring
Ping
HTTP
DNS
TCP port checking

Basic Firewall Functions
Network Address Translation (NAT)
1:1 NAT
Port forwarding
Firewall IP Access Control Lists (ACLs) and rules
Firewall transparency

Network Services
DHCP server
Authoritative DNS server
DNS request forwarding
Site-to-site VPN
Outbound Source NAT
VLAN support
Appliance Dashboard
Fleet Broadband Virtual Leased Line

Optimized VLL
- Compression
- Acceleration
- QoS
- Secure
Dual Fleet Broadband VLL

760 Kbps

Ship’s Network

LAN Manager Switch

VLL Appliance

Crew Internet
Physical VLAN 2

Science/Operations Network
Physical VLAN 1

Voice network

Shore Network

VLL Appliance
Thank you