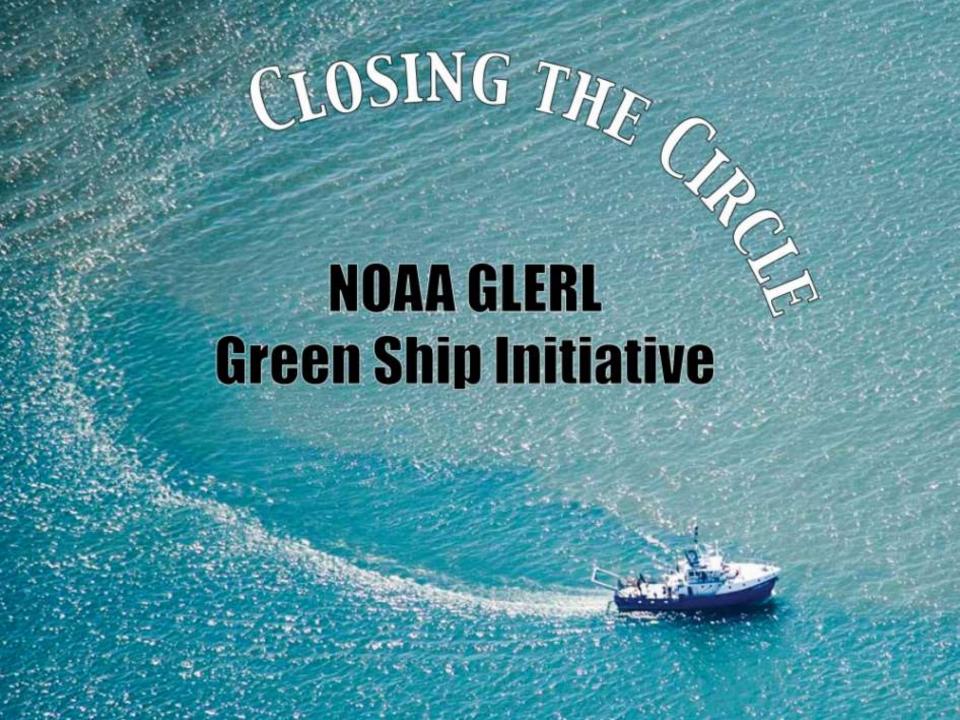
Developments in Marine


Alternative Fuels

Dennis DonahueNOAA-GLERL
Marine Superintendent

Compliance

Energy

Platforms

Operations

Management

Emissions

Sustainability

ULSD

Bio Diesel

Blends

Hybrids

CNG LNG Bio Methane

Fuel Cells

7

Technical Uncertainties

Mission Conflicts

Infrastructure

Capital Investment

Speculative Business Model End User Economics

Green Ship Initiative

Guiding Principles

- 1. Use Scale to an Advantage
- 2. Find Enhancements to Mission
- 3. Find Added Operational Value
- 4. Engage Allied Industries
- 5. Refine Standard Operations
- 6. Create Flexible Systems
- 7. Anticipate Emerging Technologies
- 8. Address Regional Players and Perspectives

GLERL B100 Fleet

Successful Strategy

- Conventional Test Methodology
 - Stabilize the process
 - Maintain process parameters
 - Introduce one variable (Fuel)
 - Measure process response
- "Measure of Equivalency"

- LMFS Test Methodology
 - *Optimize* the process
 - Adjust Process variables to reflect what is known about the test material
 - Monitor process controls that could be impacted by unknown attributes
 - Measure changes to output, process and effort
 - Readjust based upon experience
- "Measure of Effort for Optimum Results"

Technology Transfer

Federal Green Fleet Working Group - 2010-14

- Multi- agency
- Shared interest in alternative fuels
- Consolidate experience / resources
- Establish cooperative projects
- Establish protocols
- Advance renewable technologies

Army Corps of Engineers – 2011-14

- B100 Feasibility Study
- Package NOAA experience
- Emphasis on engine loading

MARAD - 2011-13

- 2nd Generation Biodiesel
- T-AGOS platform trials
- Emphasis on protocols

Cabinet Level Focus - 2013

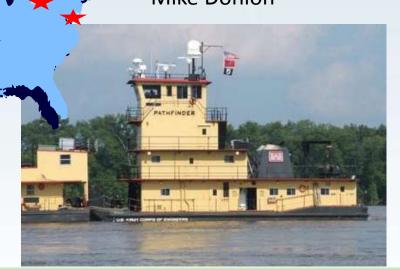
Coordination of all Federal Interests

Technology Transfer

Green Ship Working Group

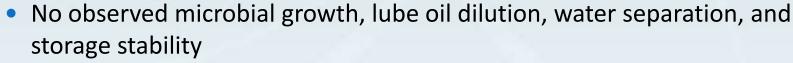
- 150 + Vessels
- 1M+ gallons annually
- Equipment development
- Shared expertise
- Logistic support
- Broad spectrum of vessels
 - Government
 - Research
 - Passenger
 - Fishing
 - Tug / Transport
 - Utility / dredge

USACE - B100 Test Vessels -2011-2014



Mike Donlon

Grizzly

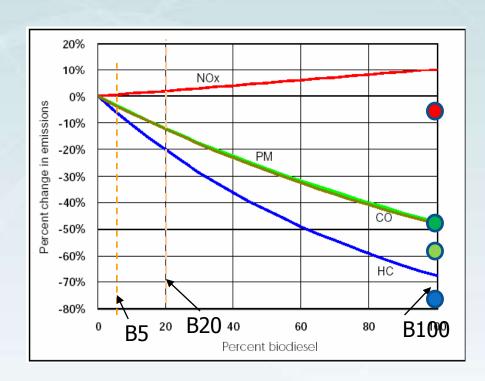


Conclusions

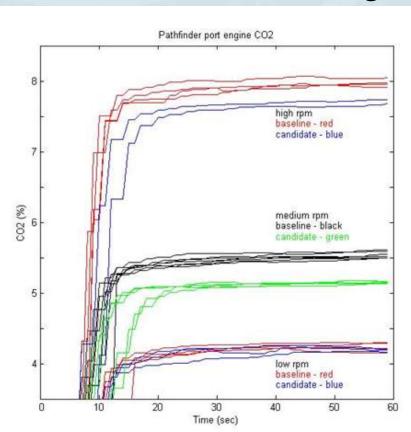
Operations

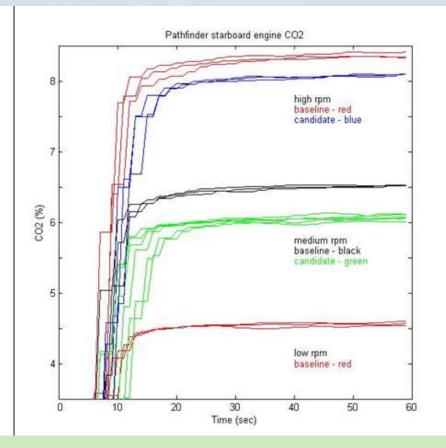
- No adverse impacts
- Availability and quality of fuel confirmed
- Operators and crew prefer B100
- No cold flow issues to date
- Material compatibility issue on 1 vessel (hoses)

- No filter plugging
- No issue with switch fueling (biodiesel to diesel)



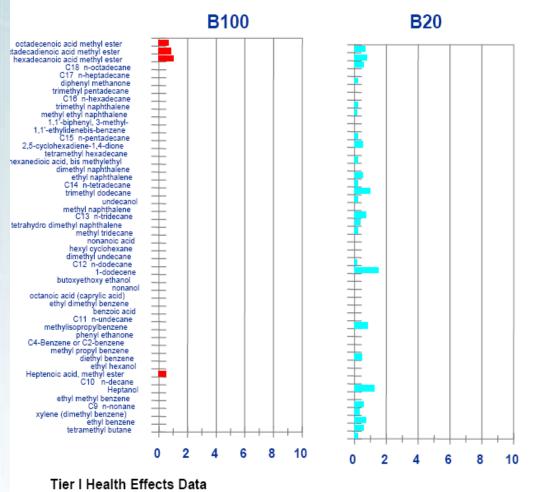
B100 Real World Value

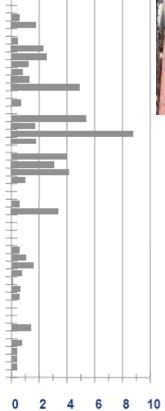

- "Legacy" Engine Performance
- No Blending Cost or Issues
- Lubricity
- Emissions
- Detergency
- Health and Safety
- Cost Savings
- Quality Control
- Local Feed Stocks



NOAA – Army Corp of Engineers - CO₂

- Higher or equal for biodiesel at low RPM
- Lower for biodiesel at mid RPM
- Lower for biodiesel at high RPM





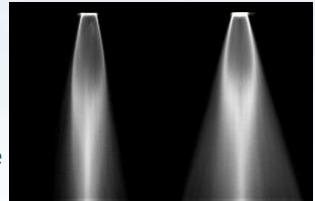
Added Value - Crew Health

Reduced carcinogens Less offensive odor Reduce seasickness

Tier 1 Health Effect Data

2D

Added Value - B100 Detergency



#2 Diesel 4 Years B100 1 Tank Turn B100 3 Tank Turns B100 One year

Tank Bottom Samples

Lubricity

Fuel Property	Diesel	Biodiesel	Units
Fuel Standard	ASTM D975	ASTM D6751	J
Lower Heating Value	~129,050	~118,170	Btu/gal
Kinematic Viscosity @ 40o C	1.3 - 4.1	1.9 - 6.0	mm2/s
Specific Gravity @ 60o C	0.85	0.88	kg/l
Density	7.079	7.328	lb/gal
Water and Sediment	0.05 max	0.05 max	% volume
Carbon	87	77	wt. %
Hydrogen	13	12	wt. %
Oxygen	0	11	wt. %
Sulfur	0.0015	0.0 to 0.0024	wt. %
Boiling Point	180 to 340	315 to 350	o C
Flash Point	60 to 80	130 to 170	o C
Cloud Point	-15 to 5	-3 to 12	o C
Pour Point	-35 to -15	-15 to 10	o C
Cetane Number	40 to 55	47 to 65	
Lubricity SLBOCLE	2,000 to 5,000	>7,000	grams
Lubricity HFRR	300 to 600	<300	microns

MARAD – 2nd Generation Biodiesel

- Navy/EPA/MARAD test protocols
- Large scale trial of HR-D (50% petroleum/50% algae)
- Blended Sugar based bio / #2 Diesel (30%/70%)
- Trial translates to large Research Vessels
 - 4 Caterpillar D398 engines
 - 450 Hours
 - 10,000 gallons
- 2012 Under-water sound transmission
- 2014 Scripps Research Institute
 - Higher Bio blends
 - Full operational conditions

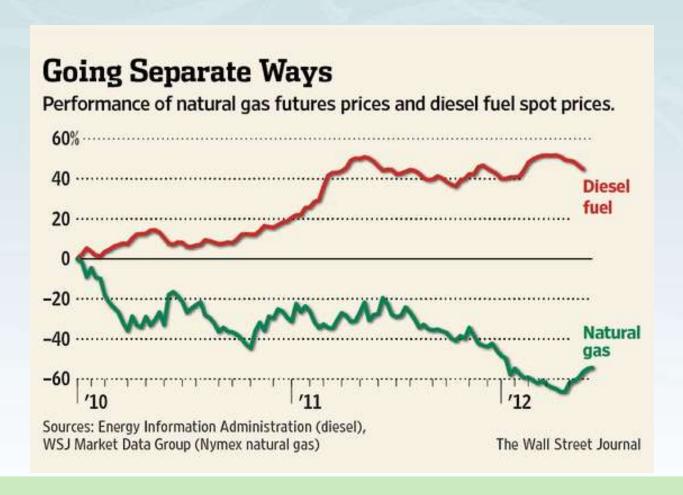
Bio Diesel - Near Term

- Apply Biodiesel to fuel cell technology
- Explore Biodiesel from catalytic reactors
- Develop regional partnerships
- Develop supply of alternate feed stocks
 - Animal fat
 - Bio waste
 - Cellulose byproducts

US Committee on the Marine Transportation System - CMTS Environmental Stewardship Action Team

Marine Alternative Fuels Initiative Focus : Natural Gas

- United States Department of Agriculture (USDA)
- United States Department of Commerce (DOC)
 - Economic Development Administration (EDA)
 - International Trade Administration (ITA)
 - National Oceanic and Atmospheric Administration (NOAA)
- United States Department of Defense (DOD)
 - United States Army Corps of Engineers (USACE)
 - United States Navy (Navy)
 - United States Transportation Command (TRANSCOM)
- United States Department of Energy (DOE)
- United States Department of the Interior (DOI)
 - United States Fish and Wildlife Service (USFWS)
 - Bureau of Ocean and Energy Management (BOEM)
 - Bureau of Safety and Environmental Enforcement (BSEE)
 - United States Geologic Survey (USGS)


- United States Department of Justice (DOJ)
- United States Department of Labor (DOL)
 - Occupational Safety and Health Administration (OSHA)
- United States Department of Homeland Security (DHS)
 - Transportation Security Administration (TSA)
 - United States Coast Guard (USCG)
 - Federal Emergency Management Agency (FEMA)
- United States Department of State (DOS)
- United States Department of Transportation (DOT)
 - Office of the Secretary of Transportation (OST)
 - Research and Innovative Technology Administration (RITA)
 - Saint Lawrence Seaway Development Corporation (SLSDC)
 - Maritime Administration (MARAD)
 - Federal Railroad Administration (FRA)
- Department of Treasury (Treasury)
- Federal Maritime Commission (FMC)
- National Transportation Safety Board (NTSB)
- Environmental Protection Agency (EPA)

Natural Gas

- Cleaner Burning
- Cost Advantage

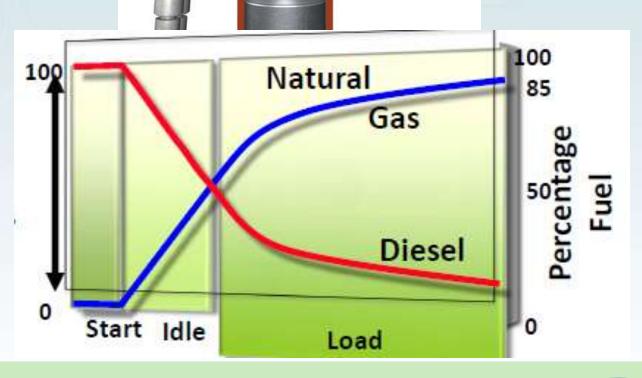
NG Marine Fuel – Scale Matters

- New Build / Repower
 - LNG only
 - Dedicated NG engines
 - Infrastructure dependent
 - Significant capital
 - Large commercial platforms

- Retrofit Dual Fuel
- CNG Centered / LNG option
- Retain full diesel capability
- Operator fueling stations
- "Work boat" economics
- Scaled to vessel architecture

Dual Fuel Engine Retrofit

一种

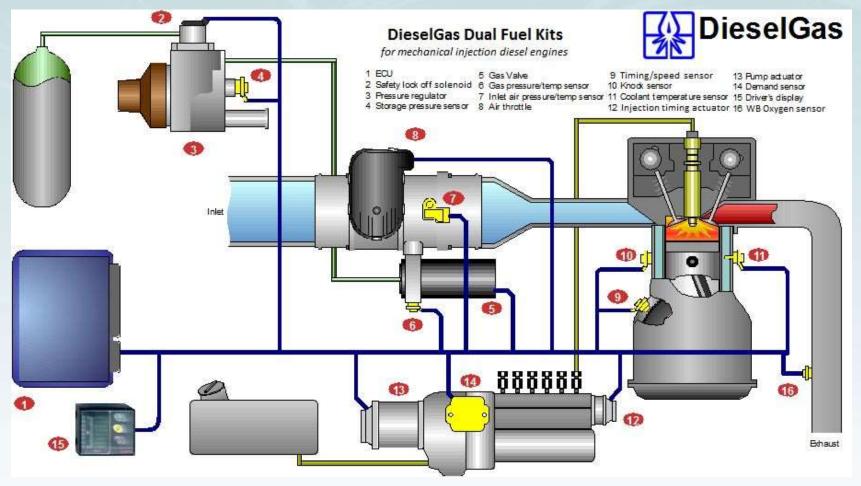

• Gas ignition by diesel compression

No change to base engine

• Run on 85% CNG

Run on 100% diesel fuel

Fully automated



Mechanical and Electronic Controlled Engines

Legacy and Tier Engines

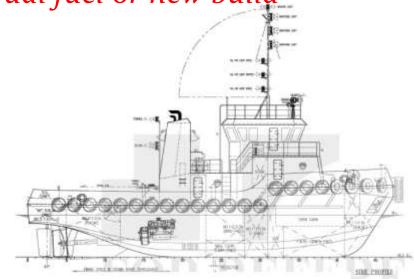
Dual Fuel Option

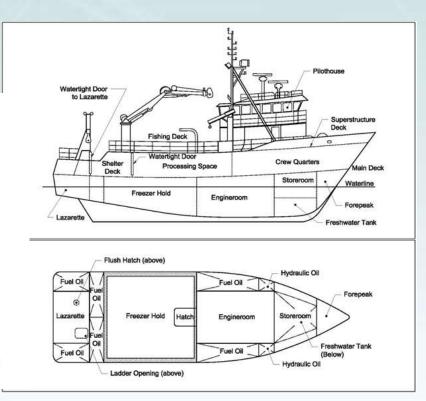
Benefits

- Significant Cost Savings \$1 / GDE
- Reduced Emissions
- Low Investment 2yr payback
- Low Risk Diesel system remains unchanged
- Increased Range
- Provides Dock Fueling Option
- Lower Radiated Noise
- Allows for emerging gas technologies

Challenges

- Tank design and construction
- Location of tanks
- "Marine" control systems
- System integration
- Port fueling infrastructure

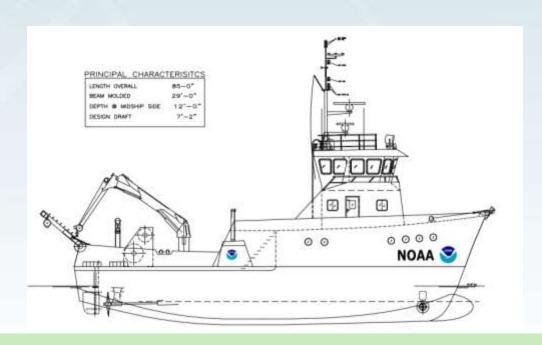

Work Boat Limitations



Naval Architecture Marine Engineering

- Fuel tanks significant impact on CG >20%
- Deck space premium
- NG Options

Dual fuel or new build



Dual Fuel - CNG/Diesel

Market Potential Study

- "Work Boat" fleet
- Coastal and Waterways vessels
- Less than 150 feet, 200 gross tons
- Less than 1500 Hp
- Non cargo carrying
- Legacy Engines

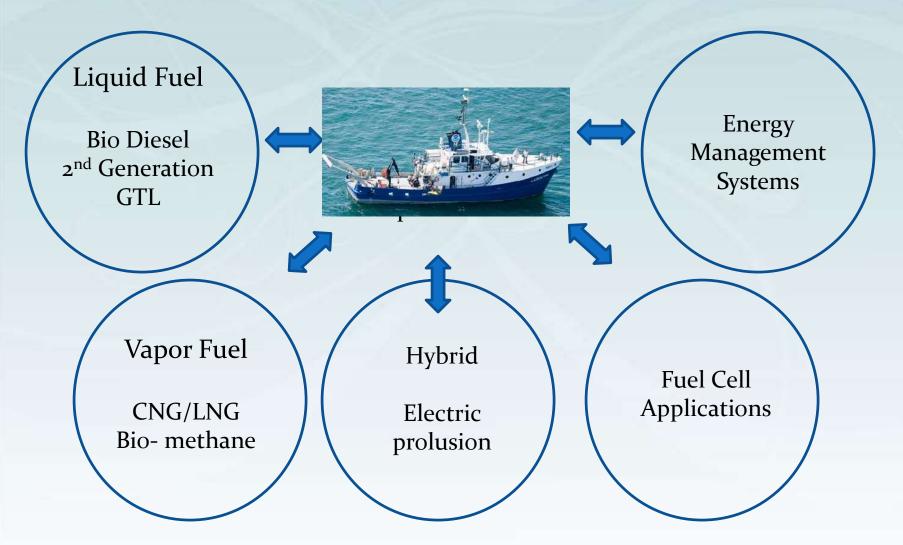
Project Elements

- Engine retrofit
 - Electronic / Mechanical
 - Two and Four stoke
 - Tier / Legacy
- ECU / GCU controls
 - Sensors
 - Interfaces and logic
- Vessel systems integration
 - Fuel delivery
 - Monitoring
 - Fire suppression
- Tank engineering
 - Optimum unit / total volume
 - Material, geometry

- Shore fueling stations
- Safety, regulatory, compliance
- Human factors
 - Training
 - Operational impact
- Performance evaluation
 - Bio Diesel / Petro Diesel
 - Power / efficiency curves
 - Emissions

Dual Fuel Time Line

- Mile stones
 - July 2014 30' Survey boat , Cummins QSD
 CNG fueling station at Muskegon, Mi


 October 2014 – 50' Research boat, Detroit 8V92 's CNG fueling station at Alpena, Mi

- June 2015 80' SRV, Cummins KTA
 - 55' Buoy tender, Detroit 12V71's
 - 41' UTB, Cummins 903's CNG fueling station at Monroe, Mi

End Game - Flexibility

