TECHNOLOGIES FOR DEEP SEA RESEARCH

DESSC NEW USER WORKSHOP DECEMBER 2014

OUTLINE

- <u>"Standard" Technologies</u> tools maintained by NDSF
- <u>"Emerging" Technologies</u> developed by scientists/engineers in context of specific project
 - future adoption by NDSF?
- Developing and Designing Technologies for Deep Sea Research
- Questions/Discussion

'TECHNOLOGY SHOULD MAKE OUR LIVES EASIER'

Goal of technology is to facilitate scientific activities:

- Sampling/Collecting
- Measuring
- Analyzing
- Imaging/Documenting
- Communicating
- Incubating/Preserving

"STANDARD" TECHNOLOGIES

- Commonly used equipment on deep sea vehicles for scientific application
- Generally maintained, installed, made available by NDSF
- Typically very robust
- Probably started as 'experimental' before being widely adopted and taken on as 'mission critical' by NDSF

COLLECTION: BIO/GEO/CHEM

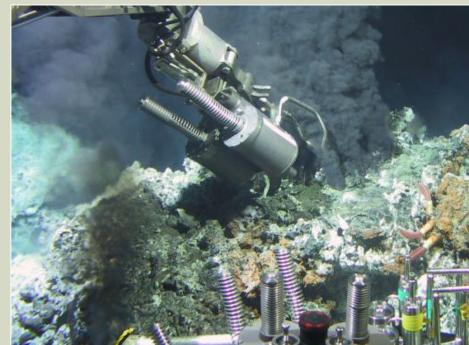
Bio Boxes

Scoop Nets

COLLECTION: BIO/GEO/CHEM

Slurp Samplers

Hydraulically pumped



COLLECTION: FLUID SAMPLING

"Major" Samplers

Pairs of 760ml syringe barrels Max T 400 °C Temp probe in nozzle via ICL

Not for gas-tight sampling

COLLECTION: FLUID SAMPLING

Niskin Samplers

Rack of 5, 1-liter PVC samplers

Mounted in a variety of positions

COLLECTION: SEDIMENTS

Push Cores

2.5" id, 12" length

MEASUREMENT: TEMPERATURE

- High Temperature Probe (RTD, thermocouples)
- Low Temperature Probe (thermistor)
- Heat Flow Probe
 - 1m version (5 thermistors)
 - 0.6m version (4 thermistors)
- ICL on Major Sampler
 - thermocouple

MEASUREMENT: CHEMISTRY

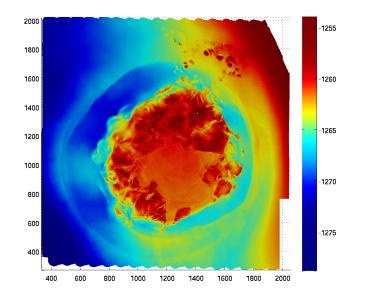
- CTD (conductivity, temperature, depth)
 - Seabird CAT 19
 - Mounted in variety of locations
- Magnetometer
 - Magnetic fields, anomalies
 - Geophysical surveys
- Dissolved Oxygen

EXPANDING COLLECTION CAPABILITIES

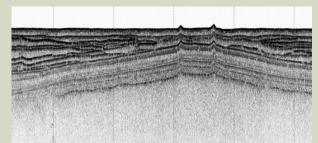
Elevators

Facilitate transfer of technology to/from seafloor

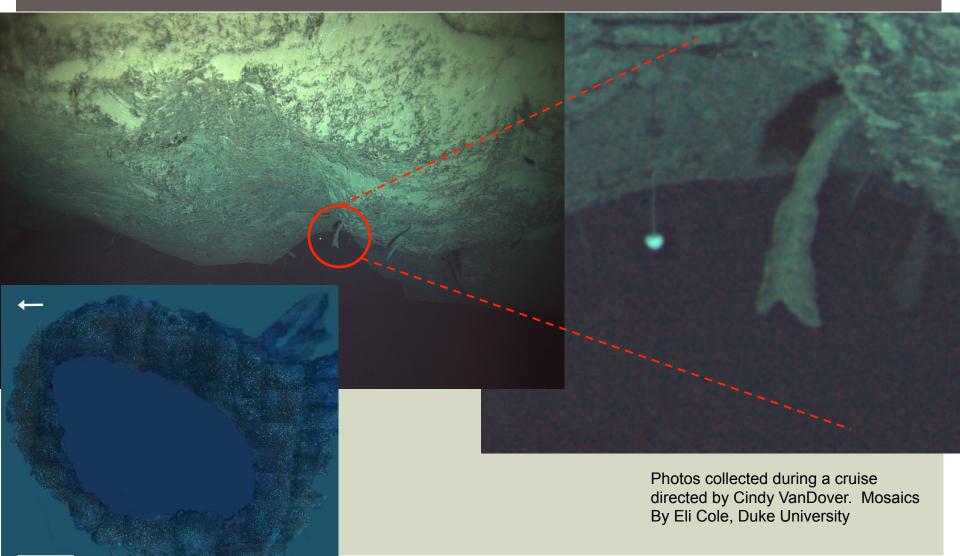
Expand sampling capabilities of vehicles (can offload samplers)


MAPPING AND SONAR

Elevators


Micro-bathymetry Backscatter Imaging Sub-bottom profiles

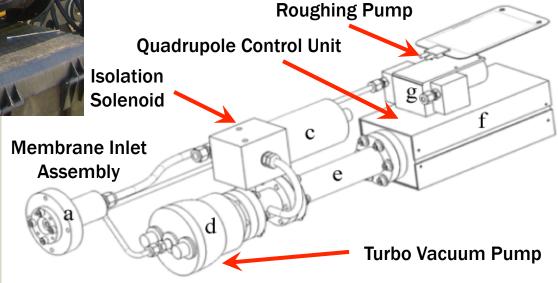
Data Collected during a cruised directed by Brian Glazier



Data collected during a cruise directed by Christopher German

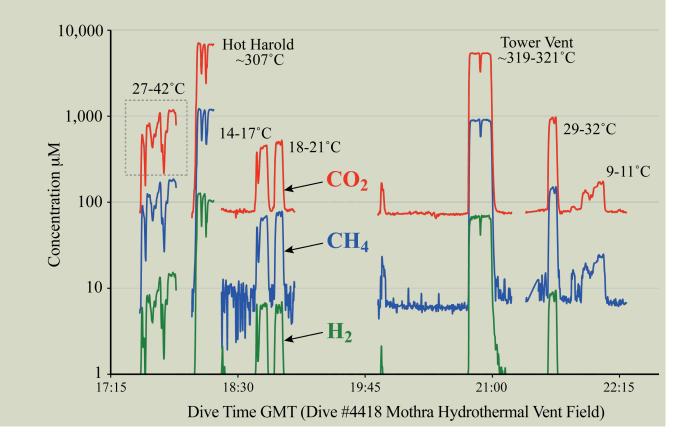
Data collected during a cruise directed by Chris German

<u>Emerging</u> Technologies


DESSC EARLY CAREER WORKSHOP DECEMBER 7TH, 2013

ANALYZING: MASS SPECTROMETRY

- Real-time dissolved gas concentrations
- Quadrupole Mass Spectrometer with Membrane Inlet
- Ultra-high vacuum, ionization of gases, Faraday Cup or


Girguis lab, Harvard; Camilli lab, WHOI Short lab, USF

Electron multiplier detection

ANALYZING: MASS SPECTROMETRY

Co-registered analysis of many gas species simultaneously
Detect/quantify biological and geochemical processes

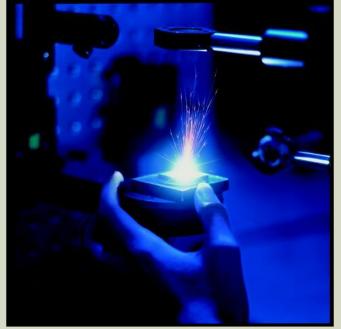
ANALYZING: LASER SPECTROSCOPY

- In situ stable isotopic composition of gases (CH₄, CO₂, etc.)
- Membrane inlet

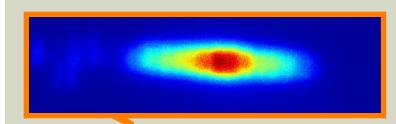


- Integrated Cavity Output Spectroscopy (ICOS)
 - very long pathlength, allows spectral features of ¹²CH₄ and ¹³CH₄
- Near IR laser source

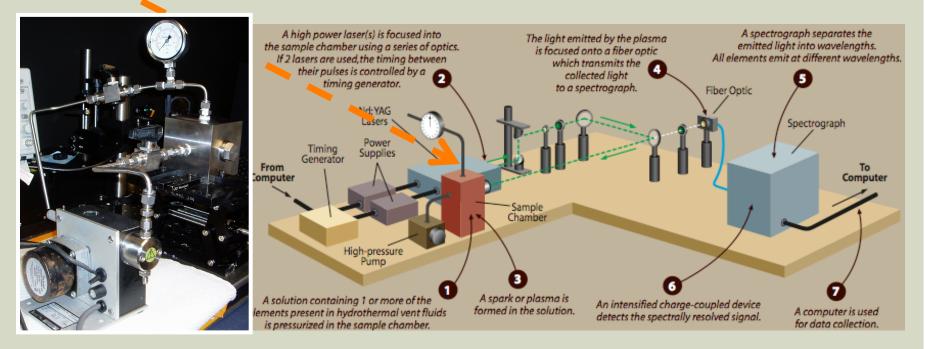
Girguis lab, Harvard; Wankel lab, WHOI


ANALYZING: LASER SPECTROSCOPY

Isotopic mapping of methane biogeochemistry

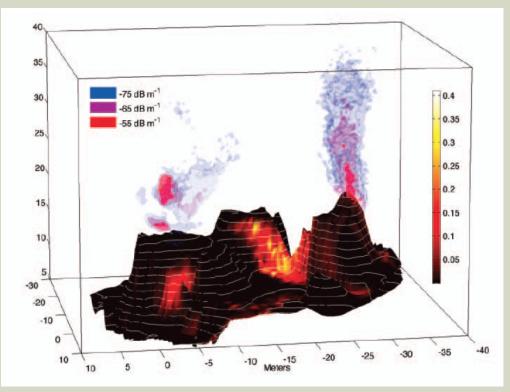

ANALYZING: IN SITU RAMAN (LIBS)

- Laser Induced Breakdown Spectroscopy (LIBS)
- Focus a high powered pulsed laser onto a sample
 - High temperature plasma formation
 - Plasma temperature: 7,000 12,000 K
- The plasma:
 - Emits a continuum of radiation
 - Expands and cools
- Excited ions and atoms revert to lower energy states
 - Emit characteristic atomic emission lines of elements
 - Information about chemistry of the sample



Anna Michel, Alan Chave

ANALYZING: IN SITU RAMAN (LIBS)


Maximum Pressure 4.1 x 10⁷ Pa Simulated Ocean Depth ~ 4000 m

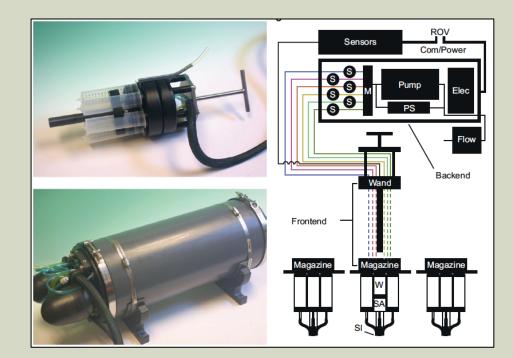
Anna Michel, Alan Chave

MEASURING/IMAGING: COVIS

- Cabled Observatory Vent Imaging Sonar
- Acoustic technique to image active venting
- **Doppler processing** \rightarrow estimate of flow rates

- Reson Multibeam Sonar
- 200/400 kHz projectors
- Adaptable positioning
- Range: 10s meters

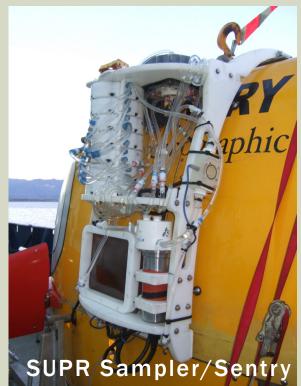
Peter Rona, Russ Light


SAMPLING: MICROBIAL MAT COLLECTION

Biogeochemical sampling tools for water column and microbial mat studies

Jason & Mat Sampler

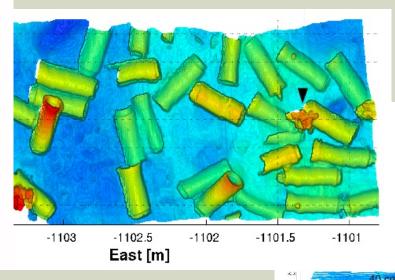
Magazine of large bore syringes for collecting samples of delicate microbial mats

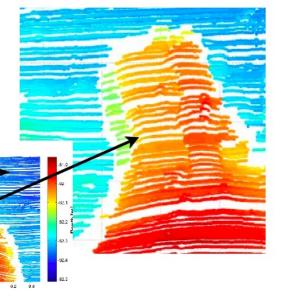

J. Chip Breier

SAMPLING: FILTRATION/PRESERVATION

Biogeochemical sampling tools for water column filtration and preservation of suspended particulate materials

- Sample water is pumped through filters
- Filters are preserved for biological and geochemical analyses
- System adapted for different vehicles

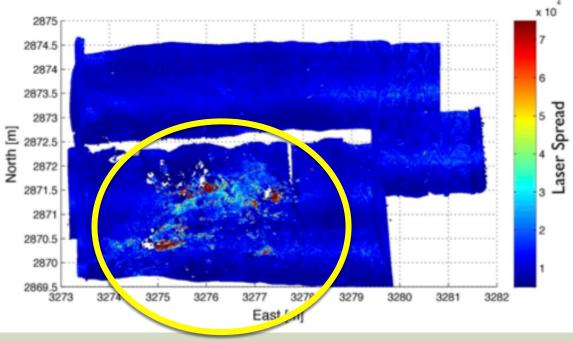

J. Chip Breier


IMAGING: STRUCTURED LIGHT SENSOR

<u>ال</u> م

0.3

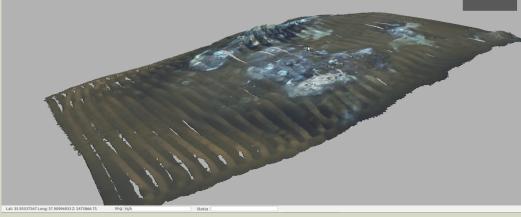
Verged sheet laser is imaged on the seafloor. The resulting bottom profiles are analogous to single ping of multibeam data.

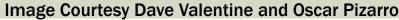


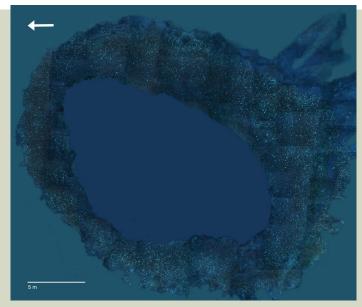
 Operating conditions: 3m altitude, 20 frames/second, vehicle speed 15-22cm/s

Clara Smart, Chris Roman

IMAGING: STRUCTURED LIGHT SENSOR


- Laser line is diffracted blurred when passing over diffuse venting (Mirage effect seen in video).
- Use as proxy for detecting diffuse venting!
- Create maps of diffuse venting
- Quantify fluid fluxes?



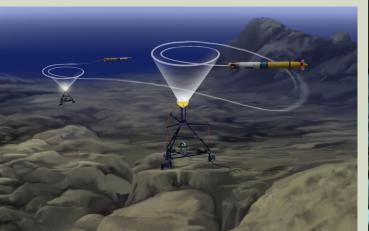

Clara Smart, Chris Roman

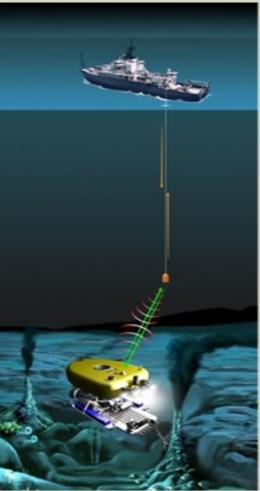
IMAGING: MOSAICS AND 3-D MODELS

- Mosaics via hand (Eli Cole Duke University pictured) or developmental NDSF pipeline based on MAURUM work
- 3-D re-constructions by Australian Center for Field Robotics

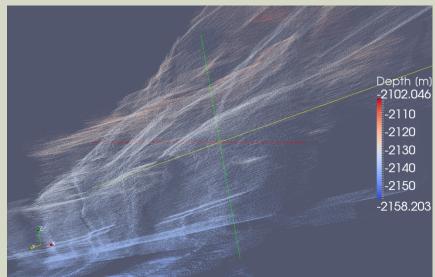
COMMUNICATING: OPTICAL MODEM

- Long range, deep water system
- Scalable transmitters
- 10Mbps rate, 150m range
- 300Kbits/Joule
- Silicon based transceiver for full daylight operation
- 5Mbps rate, 10-20 m range
- Commercially available through Lumasys Inc.





COMMUNICATING: OPTICAL MODEM


- Wireless data transfer from seafloor instrument to vessel
- Unterthered control of ROV
- AUV based 'Data Mule'

SONAR MAPPING

 Micro Mapping vertical features
Water Column Imaging

Extreme High Resolution Map of Section of Florida Escarpment with Blueview Sonar – Data collected during a cruise directed by Cindy Van Dover

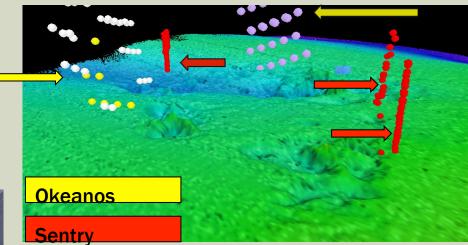


Image Courtesy Cindy Van Dover & Meme Loebecker – NOAA OER

DEVELOPING AND INCORPORATING TECHNOLOGY

(THINGS TO KEEP IN MIND)

Questions to ask yourself:

- What's the easiest the way to collect the information I need to answer the question?
- KEEP IT SIMPLE STUPID (KISS)
- Ask the experts early and often They are paid to help you!

LIMITATIONS OF POWER AND SIZE

Electrical supply

- Will you need electricity? How much? For how long? Can you get by using less? Could I use hydraulics instead?
- Can you run off of batteries or will you need power from vehicle?
- Will your power requirements impact the deployment duration?
- Will your power demand limit deployment of other tools?

Basket space, payload availability

- Will my instrument size impact other aspects of the dive (space for other instruments, handling of the vehicle)
- Does my instrument need to be handled during the dive? Can it ride underneath, in the back, or out of the way?
- How much does it weigh in water (all vehicles have weight constraints)

COMMUNICATIONS

Communications

- Will I need to 'talk' to the instrument to use it?
- Will the data be collected/logged automatically?
- Will I need to run a program or turn something off/on
- What kinds of controls will I need (minimize as much as possible)?

Pathways of Communication

- Visual (switches, lights)
- Serial (RS-232) low bandwidth "easy"
- Ethernet (CAT-5 cables, etc.)
- Inductively Coupled Link (ICL)
- Optical Modem

OPERATION AND CONTROL

Control

- How easily will it be used by the manipulators?
 - T-handles and monkey fists
- Do I need to be able to turn things off/on?
 - Can I throw switches from the control van?
 - Will I need the manipulators to turn knobs/switches/valves?
 - Dexterity can be a limitation
- Do I need to be able to see my data in real time or can data be logged for review later?
- How will I know where my data was collected.
 - Vehicle navigation is usually indexed to time
 - Often having the vehicle itself log your data can be the safest easiest course of action – especially for an AUV – requires early collaboration with the operations groups

SERVICIBILITY

Maintenance/Servicing

- How easy/hard is it to keep a full set of spare parts?
- How easy/hard is it to repair, service, rebuild components at sea?
- Can other people be easily trained to operate, troubleshoot and fix?

OTHER THOUGHTS:

- Linking your data with other dive data (lat/long, time, depth, temperature, photos, video etc.)
- Think about the best way of leveraging your technology with other tools/approaches/researchers
- Give yourself enough time for testing and coordination with engineers, pilots, crew, etc.
- Be thorough, be organized, ask questions, plan ahead

WEB RESOURCES

DSV ALVIN

- www.whoi.edu/main/hov-alvin
- JASON
 - www.whoi.edu/ndsfVehicles/Jason
- SENTRY
 - www.whoi.edu/main/sentry
 - Scientist's Guide to working with Sentry (PDF)
- Neptune Canada?
- 00|?
- Other resources?