ACTIVE HEAVE COMPENSATION

UNOLS East Coast Winch Pool

Purpose

Why

- Reduce Package Movement
 - ROV Docking
 - Steady Sampling
- Remove Slack Conditions
- Alleviate Snap Loading
- Lessens Package Kiting

Methods of Compensation

Slack Tensioner

- Limited Range
 - +- 3.5 meters
- Multiple Sheaves
- ComplicatedMaintenance
- Complex Set Up
- Difficult Running

Example

Bobbing Crane

- Limited Motion
 - **-** +-1.25 meters
- □ Fixed Installation
- Complicates Wire Path

No Example

Active Heave Compensation

- Electric and Hydraulic
- Expensive MRU
- High Accuracy
- Ship Survey

Example: Industry

Example: In ECWP Shop

Example: JASON AHC Off

Example: JASON AHC On

Typical Factors

Expected

- Perfect Survey
- Centimeter Accuracy
- □ 60 M/Min

Actual

- Approximate Survey
- Half Meter Accuracy
- □ 100 M/Min

Considerations

- Elevated velocities from the winch drum through the sheave train
- Package velocity approximately 0 M/S
- Low tension variation

The MRU

Expensive Piece of Kit

- □ \$30K
- Calibration
- Placement
- Other Uses
- Out Put

The Survey

Ship CG

MRU Placement

Overboarding Point

Woods Hole Oceanographic Institution

Method

- Simple Survey
- Calculation of Movement Around CG
- Lever Arms

Innovations

MRU Distribution

- Centralize the MRU
- Single "perfect" survey
- Allow for multiple overboarding points
- MRU stays on ship
- Allows for use with portable systems
- Possible lag

New MRUs

- Kongsberg Series 5
- MultipleOverboarding Points

New Concept

- Heave Sensor
- Small
- No Survey
- Place on any Sheave

Questions