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Fall 2024 expedition on E/V Nautilus (NA165 -

Soule)
o Remote operations component with AUV Sentry
o Areas of focus: watchstanding, data
processing, troubleshooting, and training new
personnel

Highlighted the value of developing tools in

support of in situ data processing

o Reduce required ship to shore data transfer for post-
dive analysis
Reduce human error and need for onboard experts
Provide improved consistency in analysis and QA/QC
both onboard and on shore
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* Develop a pipeline/tool for detecting anomalies and faults of
various sensor data in post-dive processing using ML/AI

techniques

* I|nitial tool is intended to run as an automated post-dive script

o Flag any abnormalities in the collected data
o Allows a remote operator to only transfer a subset of the dive’s

data for closer inspection

» Offline approach allows for extensive testing and exploration of Remote operator at WHOI

approaches, de-risking future real-time onboard applications

o "Crawl, walk, run" approach
o Benchmark specifications for onboard hardware selection

* Increase vehicle reliability through predictive maintenance
informed by these ML/Al techniques
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Load Specified Data Load YAML
(CSVs) configuration

Pull Historical Data

e Infrastructure built using Python from Archive e
* Common libraries used such as Sci-kit Learn i

Data Staging
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o Y N e N N N s et Clean/Pre-Process Data (e.g., Data Initialization and
and Tensorflow normalization, feature e ——
engineering)
) e —— ———————— Y -
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— sensor_id: ‘‘orp”

ML Model Training Initialize Model Save Model / Metadata

ml_algorithm :
k—clustering:
n_clusters: 2

random state: 42 Load Model Train Model
time_var: ‘‘hdr_t” . Apply Test Dataset
S (Update Model)
_ E v?? e e Deee——— ) e 4
‘‘dorpdt” e e e e . R e A A S
— sensor_id: ‘‘batter y i ! Save Resilis Anomaly{Fault Compute Stati.stics/ Analysis and Statistical
1 aleorithm : ! Detection Apply Metrics Layer
ml_alg : e o T, P ee—~, o= ¥
LSTM: T R e S e A S A
batch_size: 16 i Produce Plots Visualization
epochs: 80 !
learning_rate: 0.0001  TTTTToTmooommssmssmmosoosomoooes '
, laten_dim: 16 High-Level Architecture of Designed Pipeline
time_var: ‘‘hdr_t”
vars :
‘‘total_voltage” " . . .
“‘charge_ah” A. ). Dalpe, S. Kelley and A. Bowen, "Data-Driven Machine Learning Approaches to Anomaly

and Fault Detection in the Context of Remote Operations," OCEANS 2025 - Great Lakes,

YAML config file for setting parameters Chicago, IL, USA, 2025, pp. 1-8, doi: 10.23919/0CEANS59106.2025.11245099.
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1% «10° Histogram of Clustered Normalized Voltage, k=3
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e Oxidation-Reduction Potential (ORP) sensor
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* Detects hydrothermal vents and cold seeps : g P
H == =Centroid 3
* Uses the time derivative (dORP/dt) as the primary indicator » | | l
* Measures chemical shifts signaling hydrothermal activity 4 : :
a0 !
o o o ! |
* Challenge: Identifying True Anomalies A I
 Sensor designed to detect anomalies 1 Licentrpid 2 Centroidisy [Introid 1
0 0.2 0.4 0.6 0.8 1

* Must distinguish true ORP hits from sensor failures iormalizet Viiltage

«10° Histogram of Clustered Normalized Voltage, k=2

: s Cluster 1
mmmmmCluster 2
----- Centroid 1
== = =Centroid 2
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* K-means clustering chosen as approach 10

* Unsupervised algorithm
* Partitions data into clusters based on proximity to cluster centroids

Frequency
[=)] (o]

N

* Improved Two-Stage Strategy:
e Rare ORP hits required a refined workflow:

2

I
- | liCentrpid 2 troid 1
= Apply K-means to the voltage data e T o {
= (Classify dORP/dt detections Nomalizad Velbage
. . . Woltare Level OFEFP Hit Cateoory
* Transform dORP/dt into a binary detection vector I '['L - = - - P”'I I
. .. . AW Tuc Sensor Fauli
e Use a threshold of 5x the dataset standard deviation (consistent Mol Troe "Good” Anomaly
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ORP Anomaly (Binary)
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lllustrates the ability of the pipeline to provide an
efficient pass-and-fail sensor check after a dive.

Calculating a percent anomaly score from the results
would provide a fast, low-bandwidth, and singular
value, giving insight on performance to a remote

operator.

Normalized Voltage Colored by Anomaly Type for sentry742
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Battery Health LT

e Explore ways to capture and predict long-term battery degradation
o Expected mission length
o Predictive maintenance
o Reduce mission-critical breakdowns before they escalate

e Utilized the Long Short-Term Memory (LSTM) algorithm
o Capable of capturing long-term patterns from time-series data
o Can reconstruct and forecast depending on use case
Panasonic NCR18650A model—vehicle
* This application used reconstruction error to detect anomalies contains 7,140 of these cells distributed
o Features: total voltage and charge across 5 battery buckets
o Each dive defined as a distinct sequence
o Model learns to reconstruct "normal" time-series data
o Expect that as dive number increases, reconstruction error should
increase from the reconstructed sequences computed during
earlier dives used for training
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e Reconstruction error for each dive from the training
dataset e Train Trend

o Negative slope --> expected behavior as the U@J 0.2 ¢
reconstruction error should decrease or plateauasthe g oo o o 0 o e, 7 °
model learns each sequence and improves s 0 o oo T ST e e RIS
agl 0 10 o 9515 ° . o o0 oo b S 5 OO
S0.05 - IR
o 100 dives used for training o O | | | | | [ prain o |
= Too many dives in training set can lead to the 500 510 520 530 540 550 560 570 580 590 600
. . . Dive Numb
model learning degradation behavior T'Vet Tum jr
. . . . . . es ren
= This value is sensitive and requires tuning 025
o
5 0.2-
. . . c ° © RUL: 218.5 dives
* Reconstruction error for each dive in the test dataset So.is— T T X
.. _ e S LS Tk Y~ T
o Positive slope --> Increasingly deviating from "normal" 3 0.1 oot g o 00 G st Error
. . . . . c o™, g%ooo o© 5 ® I °
o ---Test Trend
behavior indicating degradation $ 0.05 ) lestTrend
o X RUL
0 | | | | 1 |
.. . . 7 7 1
o Example Remaining Useful Life (RUL) line added 000 050 00 0 e 00 200 250 000

=  110% of mean reconstruction error over first few
training set dives

= Difference between predicted failure dive and
current dive gives RUL
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Balancing Two Priorities
* Developing a scalable, generalized framework
* Creating customized models tailored to the unique
characteristics and failure modes of each sensor or system

Model Design Considerations
* Input parameter choices can significantly affect outputs
e Overfitting is a common challenge
* Requires a careful, deliberate design process

Building Trust in ML-Based Systems
* ML models can feel like a black box
* |Improve confidence through:
* Transparent model architectures
e Clear documentation of training assumptions
* Human-in-the-loop oversight
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Future Work

* Presented a ML-based framework for anomaly and fault detection in post-dive processing to
facilitate participation from remote operators

* Maintained flexibility and scalability by utilizing YAML configuration files and by-device algorithm
selection that can generalize to other vehicles and platforms

* Two case studies introduced using historical Sentry data to demonstrate utility of the approach
o Science sensor payload performance (ORP sensor)
o Battery health

e Future work:
o Expand suite of supported models
o Continue testing on additional sensors / data streams
o Refine metrics and anomaly thresholds
o Integrate the workflow into AUV Sentry post-dive procedures
o Extend methods to real-time onboard fault and anomaly detection

\S

N
7

tﬂ

WOODS HOLE OCEANOGRAPHIC INSTITUTION 10



Acknowledgements

* Sponsors: Ocean Exploration Cooperative Institute
(OECI) and NOAA Ocean Exploration

Questions?

* NOAA Pacific Marine Environmental Laboratory Contact: adalpe@whoi.edu

(PMEL) for providing the Sentry ORP sensors

OCEAN EXPLORATION COOPERATIVE INSTITUTE

cecr@y S

O(..hAN

’_ a.r-——-|-'

NATIONAL //&\ WOODS HOLE
D S |: DFEP SUBMERGENCH / OCEANOGRAPHIC

—
FACILITY —a INSTITUTION

WOODS HOLE OCEANOGRAPHIC INSTITUTION

tﬂ>>

11



	Slide 1
	Slide 2: Motivation
	Slide 3: Objectives
	Slide 4: High-Level Architecture & Design
	Slide 5: Case Study 1: ORP Sensor
	Slide 6: Case Study 1: Results
	Slide 7: Case Study 2: Battery Health
	Slide 8: Case Study 2: Results
	Slide 9: Discussion
	Slide 10: Conclusions / Future Work
	Slide 11: Acknowledgements

