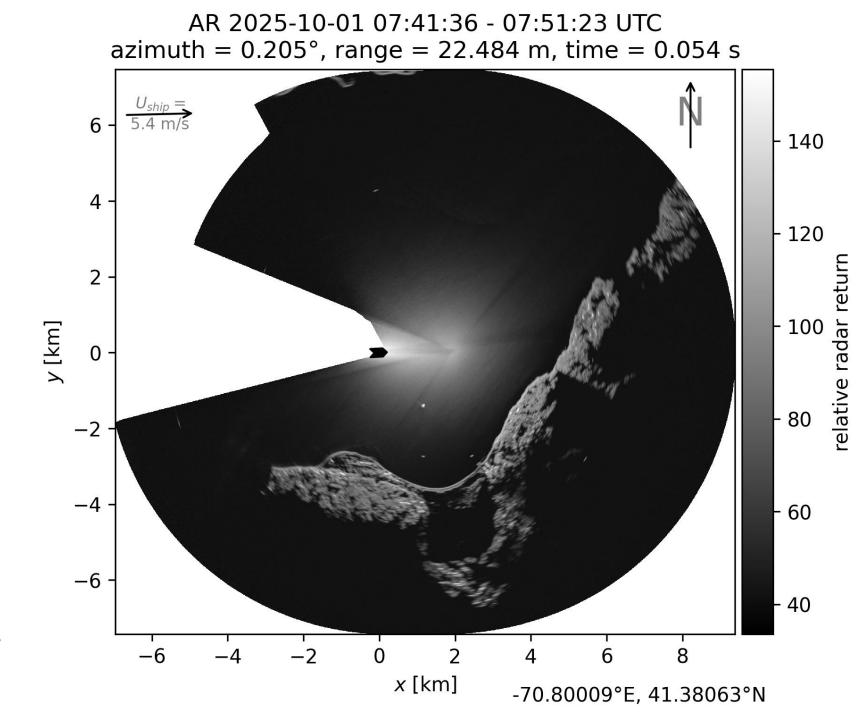

Operational support for wave & ice X-band radars

Björn Lund (<u>blund@cstars.miami.edu</u>), Kevin Polk, & Hans C. Graber

University of Miami, Center for Southeastern Tropical Advanced Remote Sensing (CSTARS)

RVTEC 2025, Scripps, La Jolla, CA

- Provide vessels with radar processing & storage servers and software.
- Calibrate radars' heading/range/time biases and significant wave height.
- CSTARS radar processing system collects radar raw & ancillary data to produce:
 - Sea surface (and sea ice) mean roughness images,
 - Near-surface current maps,
 - Wave measurements,
 - Sea ice drift maps, ...
- Improve products' visibility through web viewer on ship network.
- Remotely monitor radar operations with error notification and status emails.
- Collaborate with R2R to publicly archive radar products.


Radar calibration

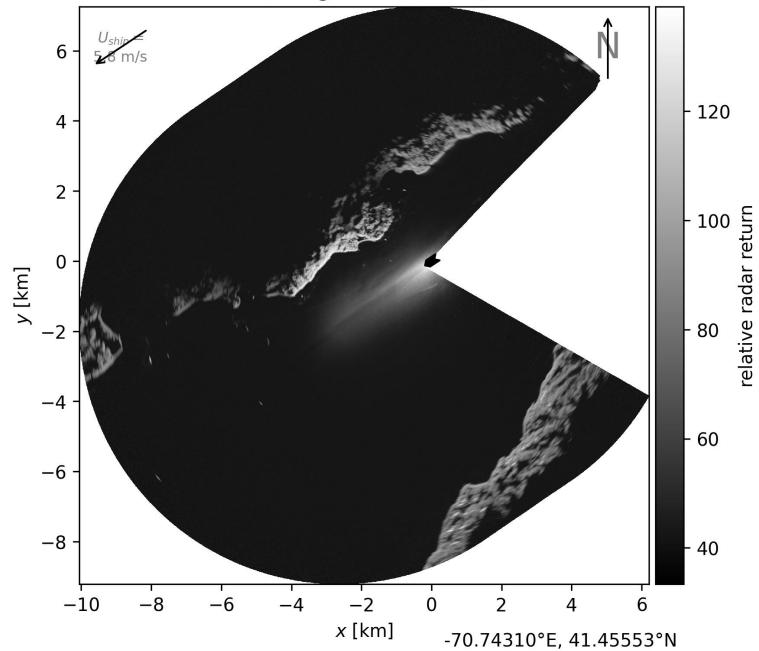
Finds the radar azimuth, range, and time offsets that maximize the image sharpness.

Requires fixed targets observed from a moving vessel.

Calibrations are repeatable within 0.1° and 0.1 s.

Following McCann & Bell (2018).

Radar calibration


Finds the radar azimuth, range, and time offsets that maximize the image sharpness.

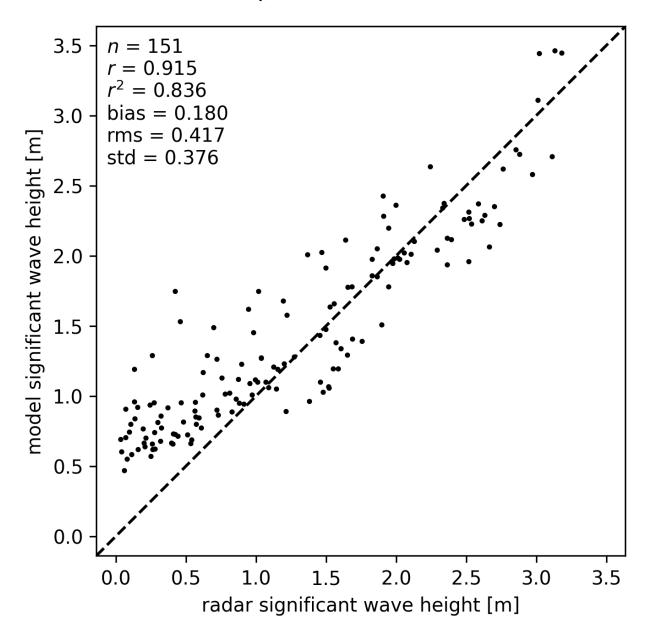
Requires fixed targets observed from a moving vessel.

Calibrations are repeatable within 0.1° and 0.1 s.

Following McCann & Bell (2018).

AR 2025-10-18 13:44:31 - 13:54:25 UTC azimuth = 0.177° , range = 22.484 m, time = 0.007 s

Significant wave height calibration


Marine X-band radar significant wave height measurements must be calibrated.

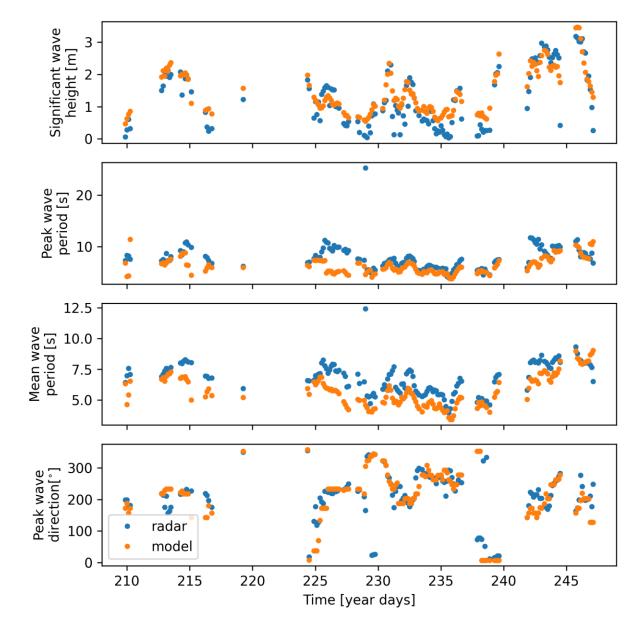
In absence of reference in situ measurements, wave model results can be used.

Scatter plot compares the radar significant wave height after calibration against the global MFWAM wave model.

Time series shows that model and radar wave parameters are in good agreement.

R/V Sikuliaq, 2025-07-29 -> 2025-09-05

Significant wave height calibration

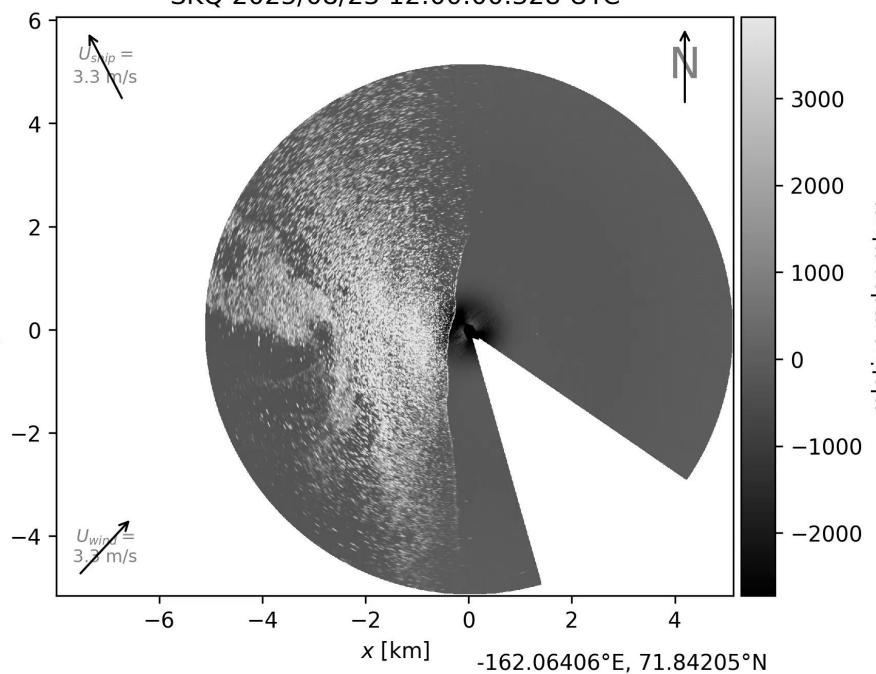

Marine X-band radar significant wave height measurements must be calibrated.

In absence of reference in situ measurements, wave model results can be used.

Scatter plot compares the radar significant wave height after calibration against the global MFWAM wave model

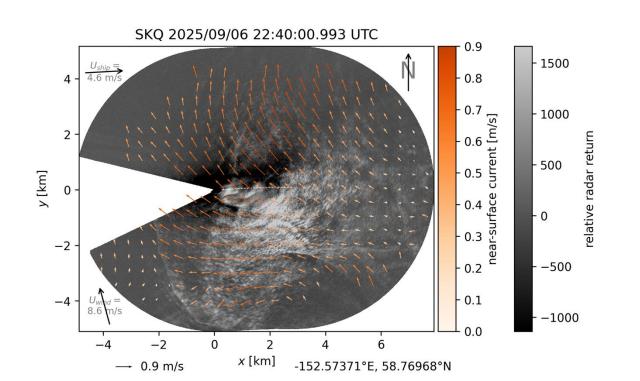
Time series shows that model and radar wave parameters are in good agreement.

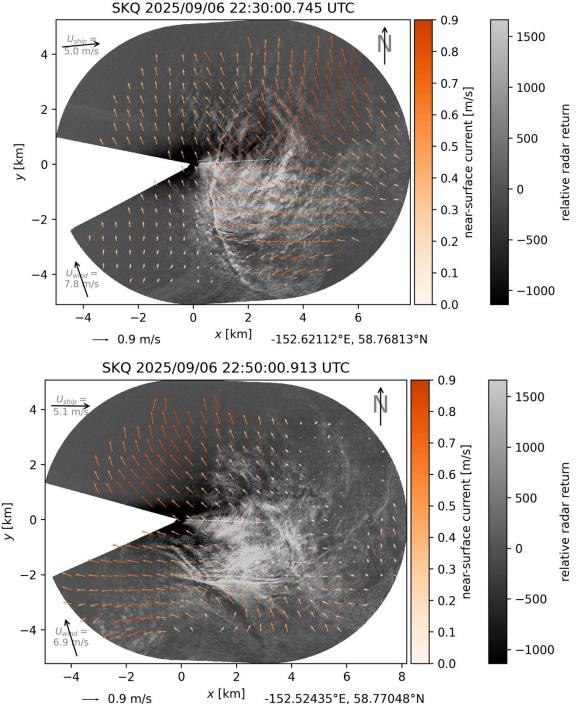
Distance from coast > 50 km



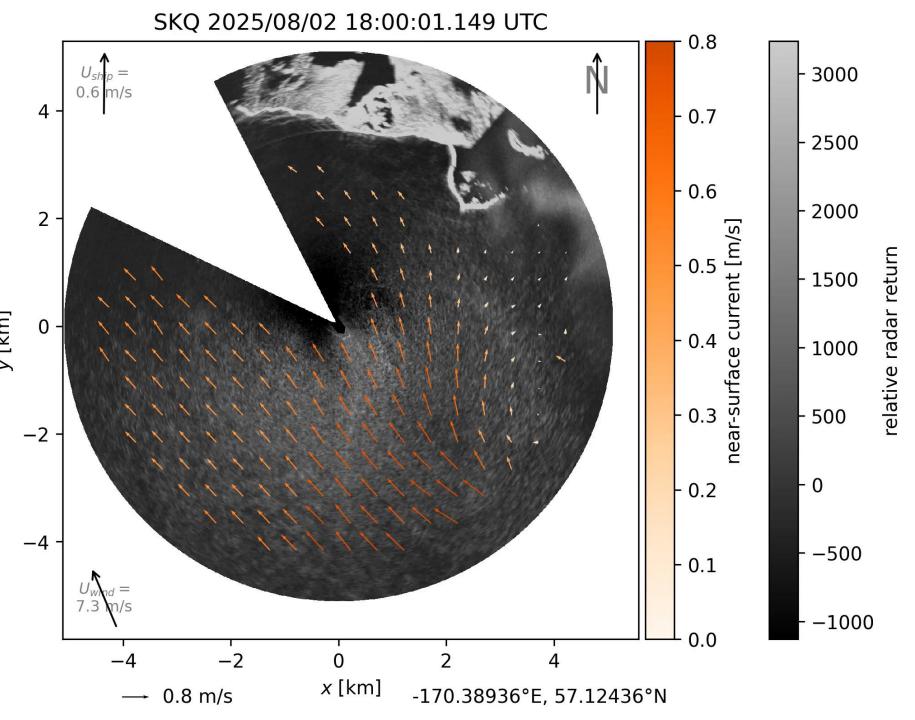
- Provide vessels with radar processing & storage servers and software.
- Calibrate radars' heading/range/time biases and significant wave height.
- CSTARS radar processing system collects radar raw & ancillary data to produce:
 - Sea surface (and sea ice) mean roughness images,
 - Near-surface current maps,
 - Wave measurements,
 - Sea ice drift maps, ...
- Improve products' visibility through web viewer on ship network.
- Remotely monitor radar operations with error notification and status emails.
- Collaborate with R2R to publicly archive radar products.

SKQ 2025/08/23 12:00:00.328 UTC

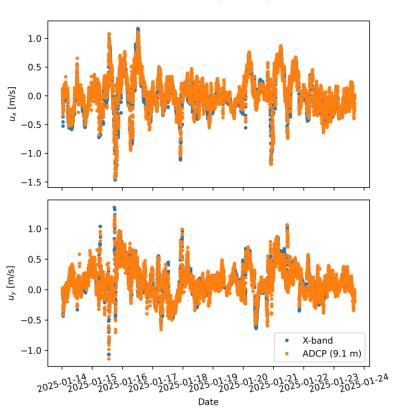

Sea surface roughness images

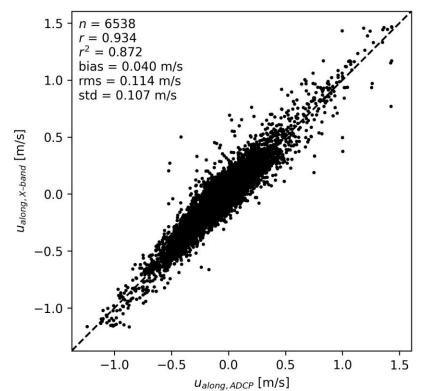

30-s averaged radar images from R/V Sikuliaq (23 August 2025) with sea ice and open water

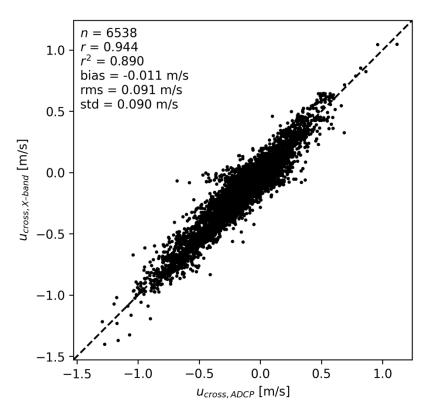
Near-surface current maps & radar image mosaics


Time series of radar near-surface current maps from R/V Sikuliaq (6 Sep 2025) over radar image mosaics with ship tracks as white dashed lines

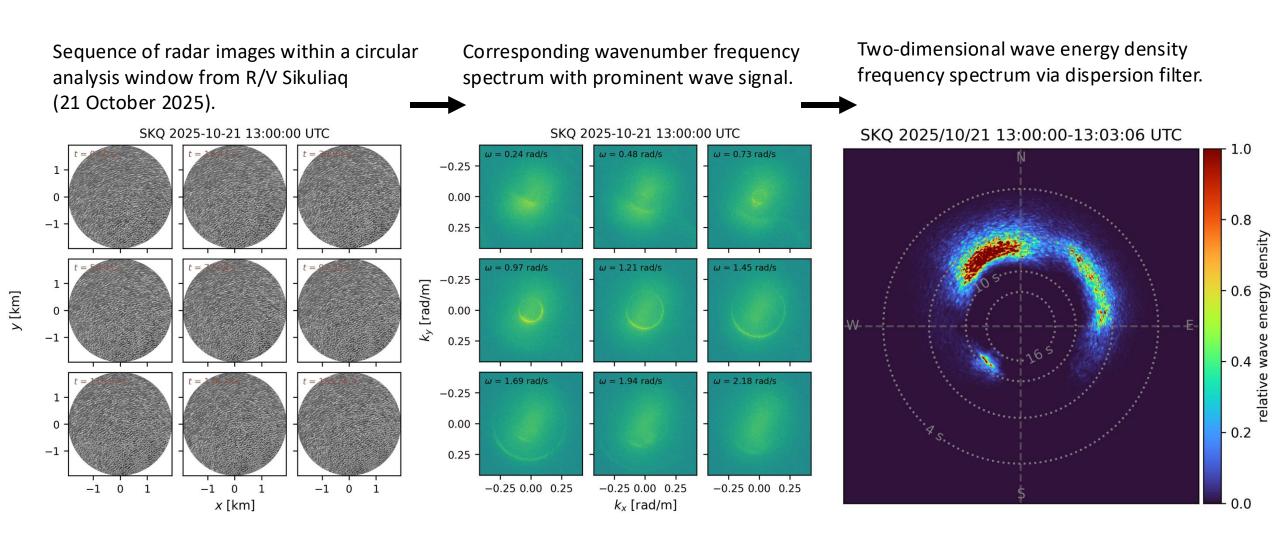
Nearsurface current maps

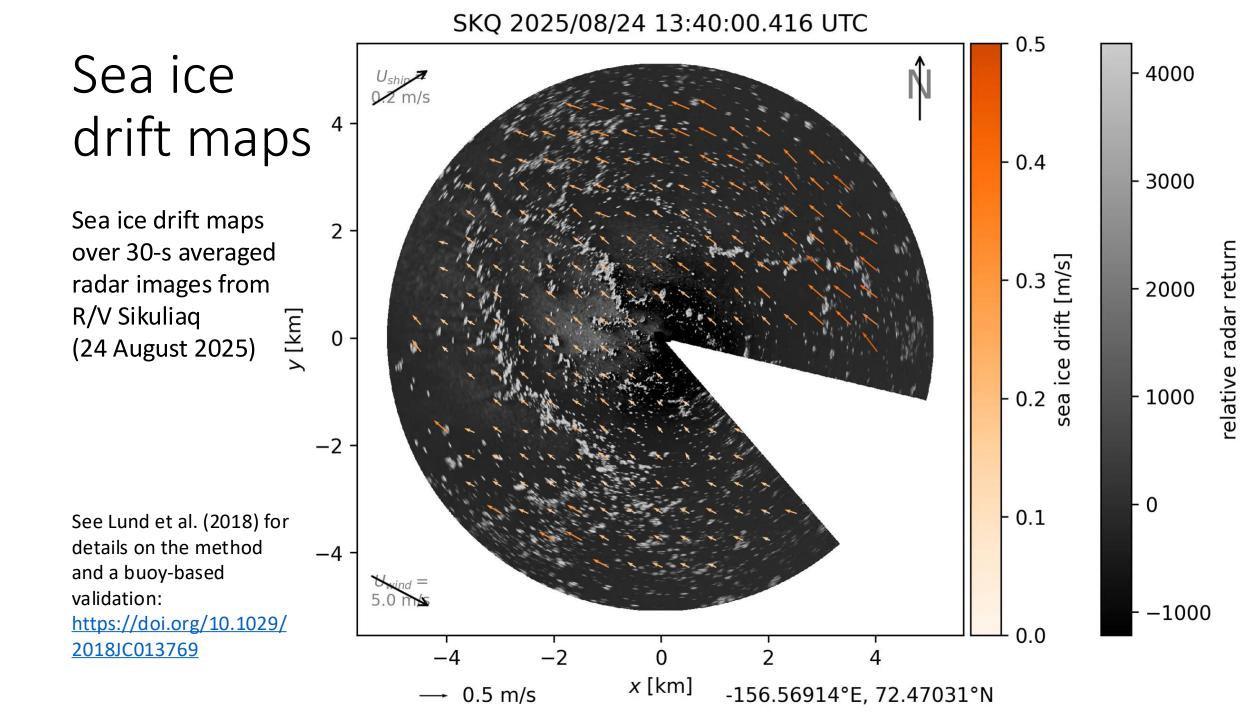

Near-surface current maps from R/V Sikuliaq (2 August 2025) over 30-s averaged radar images with current fronts and small-scale eddy

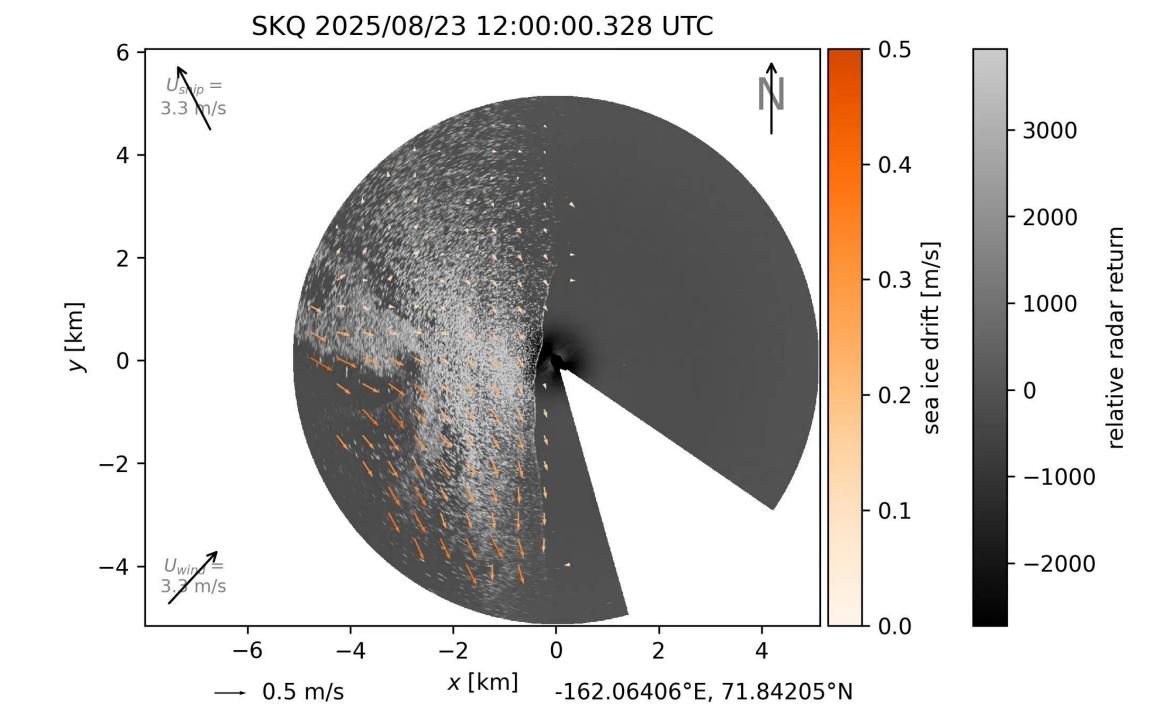



Near-surface current maps

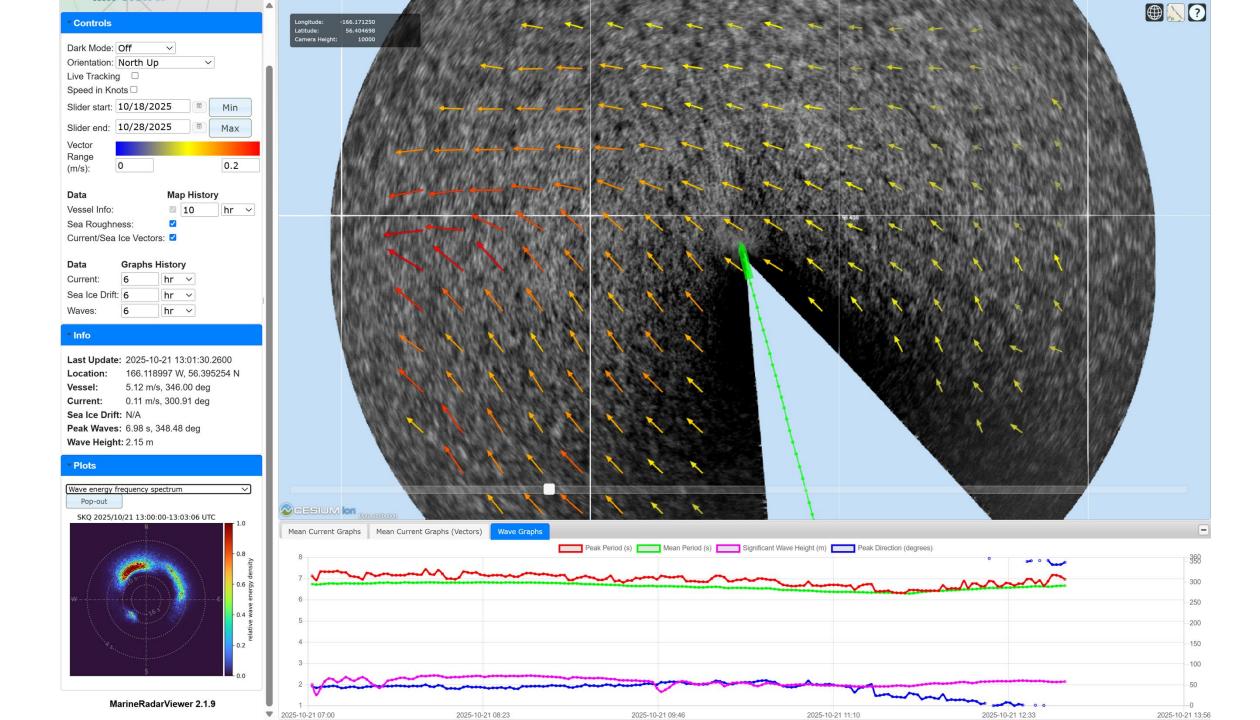
Comparison between radar near-surface currents (1-4 m effective depth) and WH300 ADCP currents (9.1 m) by UHDAS from R/V Thomas G. Thompson (14-24 January 2025); due to vertical shear the radar currents have a 4 cm/s bias in the along-wind direction

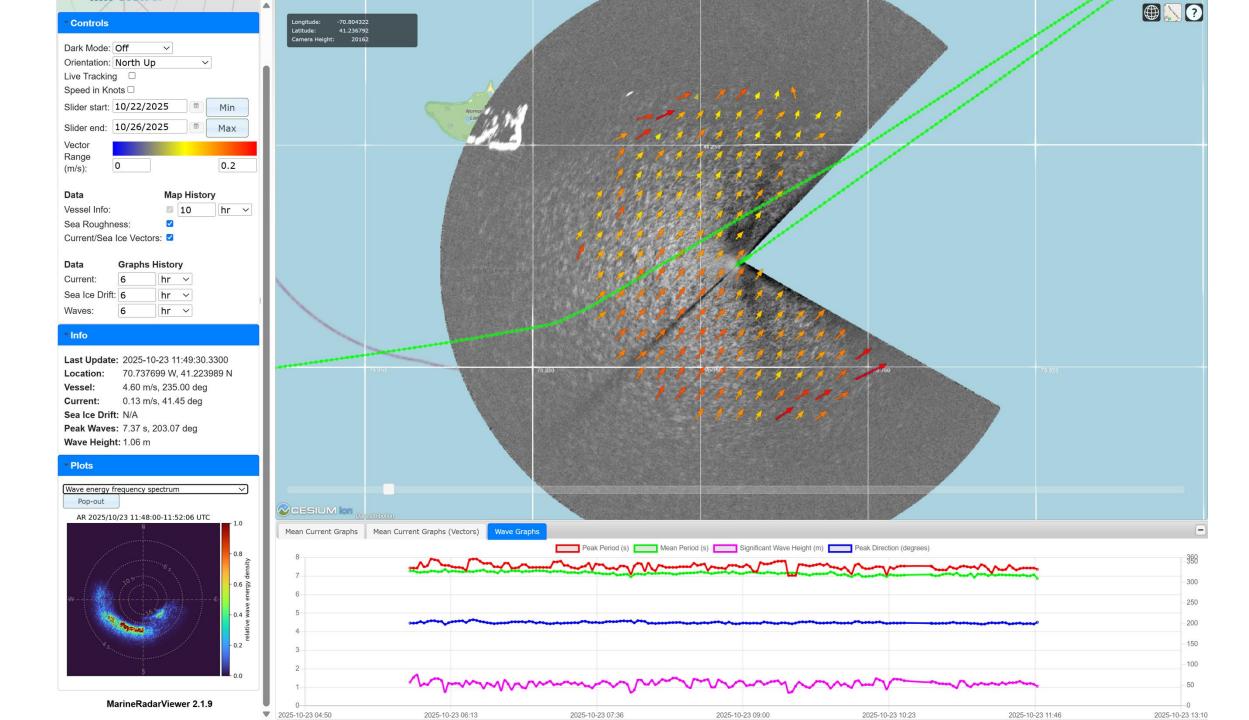

See Lund et al. (2018) for details on the method and a drifter-based validation: https://doi.org/10.1175/JTECH-D-17-0154.1





Wave measurements




See Lund et al. (2016) for details on the method and a model comparison: https://doi.org/10.1007/s10236-016-0961-z.

- Provide vessels with radar processing & storage servers and software.
- Calibrate radars' heading/range/time biases and significant wave height.
- CSTARS radar processing system collects radar raw & ancillary data to produce:
 - Sea surface (and sea ice) mean roughness images,
 - Near-surface current maps,
 - Wave measurements,
 - Sea ice drift maps, ...
- Improve products' visibility through web viewer on ship network.
- Remotely monitor radar operations with error notification and status emails.
- Collaborate with R2R to publicly archive radar products.

- Provide vessels with radar processing & storage servers and software.
- Calibrate radars' heading/range/time biases and significant wave height.
- CSTARS radar processing system collects radar raw & ancillary data to produce:
 - Sea surface (and sea ice) mean roughness images,
 - Near-surface current maps,
 - Wave measurements,
 - Sea ice drift maps, ...
- Improve products' visibility through web viewer on ship network.
- Remotely monitor radar operations with error notification and status emails.
- Collaborate with R2R to publicly archive radar products.

System status monitoring

Sample system status email from R/V Sikuliaq (status "good").

Remote access allows us to resolve issues when they occur.

Outlook

[EXTERNAL] SKQ radar acquisition status at 2025-10-22 12:58:15 UTC (status: good)

m cstars@marineradar.sikuliaq.alaska.edu <cstars@marineradar.sikuliaq.alaska.edu

To CSTARS Marine Radar cmarineradar@cstars.miami.edu>: uaf skg science support@alaska.edu <uaf skg science support@

CAUTION: This email originated from outside the organization. DO NOT CLICK ON LINKS or OPEN ATTACHMENTS unless

Marine Radar Viewer Status - 2025-10-22 12:58:15 UTC

Docition

Path	File	Message
/dataraw/serial/seapath/*.log	2025-10- 22_seapath.log	Most recent GGA entry from 2025-10-22_seapath.log: 2025-10-22_12-58-03.476632 \$GPGGA,125803.46,6001.940828,N,16817.739930,W.2,07,1.2,0.32,M,10.34,M,1.2,1022*58 Open in Google Maps

/lountpoint

Mount	Message	
/synology	Mount /synology is mounted	
/rutter-internal	Mount /rutter-internal is mounted	

Storage

Disk	Used [GB]	Total [GB]	Free [GB]	Used [%]
/dataproc	375.87	3666.45	3290.58	10.25
/dataraw	186.97	3666.45	3479.48	5.10
/	175.61	432.10	256.49	40.64
/synology	40979.52	71479.68	30500.16	57.33
/dev/shm	7.16	125.76	118.61	5.69

Acquisition Files

Path	Latest File	Last Accessed	
/dataraw/sig/*.sig	/dataraw/sig/SKQ-2025-10-22-12-56-56-sig	2025-10-22 12:57:45 UTC	
/dataraw/serial/seapath/*.log	/dataraw/serial/seapath/2025-10-22_seapath.log	2025-10-22 12:58:03 UTC	
/dataraw/serial/mgc1/*.log	/dataraw/serial/mgc1/2025-10-22_mgc1.log	2025-10-22 12:58:03 UTC	

Processing

Name	Workers	PID	ETimes [s]	CpuTime [s]	Cpu [%]	Mem [MB]	Mem [%]
parse_nmea.py		768531	336,575	31,225	9.2	61.875	0.0
parse_pol.py		768532	336,576	17,790	5.2	702.371	0.2
parse_pol.py	3		336,576	114,352	33.98	163.297	0.06
pol_to_car.py		768533	336,576	23,172	6.8	1173.98	0.4
pol_to_car.py	3		336,576	159,432	47.37	185.027	0.07
imaging.py		768535	336,576	34,342	10.2	3124.77	1.2
imaging.py		768537	336,576	44,882	13.3	17787.734	6.9
waves.py		768539	336,576	47,465	14.1	2243.984	0.8
waves.py	4		336,576	738,805	219.51	1893.035	0.73
car_to_spec.py		769114	336,575	48,988	14.5	1667.965	0.6
car_to_spec.py	4		336,575	323,006	95.97	596.48	0.23
cur_bathy.py		769115	336,575	7,079	2.1	230.016	0.0
cur_bathy.py	20		336,575	15,230,705	4525.2	4662.074	1.81

Network

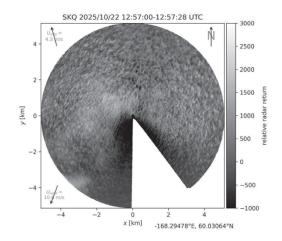
Int	terface	IP Addresses	Bytes Sent [MB/min avg]	Bytes Received [MB/min avg]
lo		[127.0.0.1]	1.2	1.2
eno	1	[192.168.100.101]	0.1	0.2
eno	2	[10.3.0.47]	0.0	2.6
enp	216s0f0	['10.20.30.40']	0.0	0.0

Last Image

Image timestamp: 2025-10-22 12:58:10 UTC

/dataraw/udp/wind/*.log	/dataraw/udp/wind/2025 10 22_wind_gill_fwdmast_true.log	2025 10 22 12:58:03 UTC
/dataraw/udp/cnav/*.log	/dataraw/udp/cnav/2025 10 22_cnav.log	2025 10 22 12:58:03 UTC

Quality Control


Туре	Message
Radar raw data acquisition rate Radar raw data rate of 12.64 MB/s (based on 6 sig files)	
GPS measurement success rate	GPS measurment success rate of 100.0% (2968/2968); GPS measurement frequency of 10.00 Hz
Cartesian radar image update rate	Cartesian image creation success rate of 100.0% (420/420; median antenna rotation period of 1.30 s)
Current retrieval success rate	Current measurement success rate of 98.9% (3736/3778)

Acquisition Info

Туре	Message	
/dataraw/sig/SKQ-2025-10-22-12- 56-16.sig	/dataraw/sig/SKQ: 2025-10-22-12-56-16-sig has mean antenna rotation period of 1,22825 s with 1/2315 (0.04%) leading pulses lost	
Polar radar image range	2025-10-21 12:58:24 -> 2025-10-22 12:56:55	
Mean pulse repetition frequency	3092.631 Hz	
Std pulse repetition frequency	0.528 Hz	
Min pulse repetition frequency	3090.276 Hz	
Max pulse repetition frequency	3095.337 Hz	
Cartesian radar image range	2025 10 21 12:58:03.810453 > 2025 10 22 12:57:10.620812	
Median antenna rotation period	1.300s	
Number of acquired radar scans	66422	
Number of missed radar scans	0 (0.000%)	

Database Int

Database	Size [MB]
car_to_spec	63.77
cur_bathy	2028.06
imaging	1.55
information_schema	0.00
marineradarviewer	141.88
mysql	2.70
parse_nmea	707.59
parse_pol	10.38

performance_schema	0.00
pol_to_car	15.58
scanning	0.11
sys	0.02
waves	161.73

Database Lag

Table	Column	Delay [min]
parse_nmea.gps	datetime	Lag of 0 min
parse_pol.pol	start_datetime	Lag of 1 min
parse_pol.pps	pps_datetime	Lag of 0 min
pol_to_car.car	start_datetime	Lag of 0 min
imaging.car_avg	start_datetime	Lag of 2 min
waves.spec	start_datetime	Lag of 6 min
scanning.car_avg	start_datetime	Lag of 18 min
car_to_spec.spec	start_datetime	Lag of 6 min
sea_ice_drift.sea_ice_drift	start_datetime	Table 'sea_ice_driftsea_ice_drift' doesn't exist

Processing Info

Table / Name	Message
parse_nmea.gps / parse_nmea.py	2025-10-22 12:58:00, Longitude: -168.295621°, Latitude: 60.032231°, Heading: 353.38°
parse_nmea.gps_secondary / parse_nmea.py	None
parse_nmea.gyroc / parse_nmea.py	2025-10-22 12:58:00, Heading: 353.21*
parse_nmea.wind / parse_nmea.py	2025-10-22 12:58:00, Wind Speed: 13:7m/s, Wind Dir: 12:2*
parse_pol.pol / parse_pol.py	2025-10-22 12:56:55, Pulse Frequency: 3092.77Hz
parse_pol.pps / parse_pol.py	2025-10-22 12:57:35:223803
pol_to_car.car / pol_to_car.py	2025-10-22 12:57:11
imaging.car_avg / imaging.py	2025-10-22 12:56:00
scanning.car_avg / imaging.py	2025-10-22 12:40:01
waves.waves_mean / waves.py	2025-10-22-12-52:00, H: 36.97m, HS: 2.68m, TP: 7.43s, TM: 7.94s, DP: 16.77*, UX: 0.37m/s, UY: -0.02m/s
cur_bathy.currents / cur_bathy.py	2025 10 22 12:52:00, H: 32.97m, UX: 0.39m/s, UY: 0m/s
sea_ice_drift.sea_ice_drift / sea_ice_drift.py	Table 'sea_ice_drift.sea_ice_drift' doesn't exist

- Provide vessels with radar processing & storage servers and software.
- Calibrate radars' heading/range/time biases and significant wave height.
- CSTARS radar processing system collects radar raw & ancillary data to produce:
 - Sea surface (and sea ice) mean roughness images,
 - Near-surface current maps,
 - Wave measurements,
 - Sea ice drift maps, ...
- Improve products' visibility through web viewer on ship network.
- Remotely monitor radar operations with error notification and status emails.
- Collaborate with R2R to publicly archive radar products.

Radar product sharing and raw data archiving

- Marine X-band radar data volumes (assuming 250 sea days/year):
 - Radar products with or without roughness images at 30 s resolution:
 - R/V Sikuliaq: ~14.2 GB/day, ~3.6 TB/year or ~1.2 GB/day, ~300 GB/year.
 - R/Vs Neil Armstrong & Thomas G. Thompson: ~24.8 GB/day, ~6.2 TB/year or ~1.8 GB/day, ~450 GB/year.
 - Radar raw data:
 - R/V Sikuliaq: ~903 GB/day, ~226 TB/year.
 - R/Vs Armstrong & Thompson: ~502 GB/day, ~126 TB/year.

Radar products:

- Stored in NetCDF format following the Climate and Forecast (CF) and Sensing the Ocean with Marine Radar (SOMaR; currently in draft stage) metadata conventions.
- To be included in the cruise distros & added to the R2R catalog.

Radar raw data:

- Stored shipboard with pairs of Synology NAS servers (~96 TB capacity per unit).
- Currently archived on tape at CSTARS; we are seeking a long-term public archive solution.
- Size can be reduced by lowering the range resolution and/or maximum range.

X-band radar program's timeline (abridged)

• PY2 (Sep 2024 – Aug 2025):

- Extended radar support to R/V Thomas G. Thompson.
- Replaced brushes on R/V Neil Armstrong, transitioned from POSMV to Seapath, replaced failed SSD & repaired file system.
- Transitioned from POL to SIG files on R/V Sikuliaq, replaced failed SSD & repaired file system.
- Regularly calibrated radar azimuth/range/time and significant wave height.
- Continuously updated radar processing software.
- Archived radar products and raw data at CSTARS.

• PY3 (Sep 2025 – Aug 2026):

- Develop SOMaR standard for radar product variables not described by CF standard.
- Write data paper as a reference for radar products.
- Create wiki and develop open-source software to ease access to radar products.
- Add radar products to cruise data sets and R2R catalog.
- Identify long-term public archive for radar raw data: explore use of tape library and Globus.
- Extend radar support to other radar-equipped research vessels.

Best practices & questions

- Record GPS and accurate heading data at high temporal resolution (>1 Hz) via serial feed.
- Enable regular radar calibrations by recording radar raw data while departing from and returning to port.
- Synchronize the radar acquisition server with the ship's time server.
- Interested in enhancing your shipboard X-band radar's capabilities?
- Have suggestions for big data storage, transfer, & public archiving?
- Contact marineradar@cstars.miami.edu or blund@cstars.miami.edu.