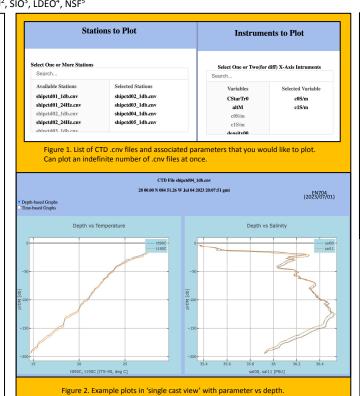


Rolling Deck to Repository (R2R) Mojolicious Plotting Routine (CTD)

Rebecca Hudak¹, Snehal Prabhu¹, Laura Stolp⁵, Scott Harding¹, Aaron Mau³, Shawn Smith², Dru Clark³, Suzanne O'Hara⁴, Karen Stocks³, Suzanne Carbotte⁴, Emily Miller⁴, Rafael Uribe⁴, George Dubinin³, Gwynne Hayes⁴ WHOI¹, FSU², SIO³, LDEO⁴, NSF⁵


Background:

Rolling Deck to Repository (R2R) supports acquisition, documentation, preservation, and enhanced usability of underway environmental sensor data from scientific cruises by the U.S. Academic Research Fleet (ARF). R2R, in collaboration with several institutions, has been creating Best Practices for many shipboard instruments. The goal of the Best Practices are to ensure the 'Reusability' of data under FAIR data guidelines.

The CTD acquisition system on UNOLS vessels has long been used to collect data of the water column. Many scientists use the CTD as a 'fail-safe' way to collect data when other scientific operations are put on hold due to weather or equipment malfunction. Good CTD data takes more than putting the carousel into the water. It needs dedicated time for thorough cleaning and documentation of drift over time. It is valuable to review CTD data collected during the cruise so modifications or cleaning can occur before another cast is collected.

A great diagnostic tool to use during acquisition of data are difference plots between any two lines of plumbed sensors (ie. conductivity, temperature, or oxygen). These plots are integral in showing a dirty sensor or something getting stuck in the CTD causing an error in the data.

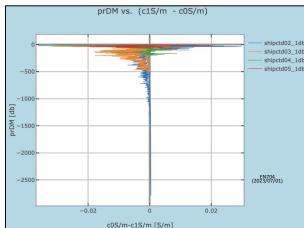


Figure 3. Example of a 'multiple cast view' from EN704 with two plumbed conductivity sensors in a conductivity vs depth plot.

Processing Notes:

Please note this CTD plotting routine needs a processed CTD file (.cnv). Which can be generated by Seabird's SBEDataProcessing software. For information on operation, refer to the SBEDataProcessing manual (pages 19/20).

Step 1. SBE Data Processing Software on Windows

On the Run Tab select Data Conversion. On the Data Conversion window in File setup:

Select the .psa file as a Program Setup File and the .XMLCON file as the Instrument configuration file and the .hex file as the Input
file

Step 2. Data Setup Tab on Data Conversion Window

Select Output Variables: Add any additional variables required. Remove the Time, System [seconds] variable. Recommend Variables: Depth, Lat, Lon, Conductivity 182, Salinity 182, Temperature 182, Oxygen, Pressure Start Process - Generates the, cum file

