
Ocean Data Tools
https://oceandatatools.org
RVTEC 2024 Tutorial
David Pablo Cohn - david.cohn@openrvdas.org

https://docs.google.com/presentation/d/1jOas7mTRl4NCyY9qZcu_pyNMj3wlOPQUCt3lAXsV2W4/edit?usp=sharing


OpenRVDAS
● Introduction - what/why/where
● Loggers 101 - components/running/parsing
● Whole system overview - installation/controlling loggers
● Cached Data Server - fun and games with derived data
● Pain points - cruise configurations/device definitions
● Displaying data - native/InfluxDB+Grafana
● Best practices
● Contributing
● Where to from here?



OpenRVDAS
● What is it?

● What's special about 
it?

● What can it do?

Architecture that lets you snap 
together simple components to 
build a customized data 
acquisition system for your 
ship/station/chicken coop.

Intended function is to get data 
from sensors to file/database/ 
network/graphics, with 
opportunity to process and/or 
mash it around into different 
formats on the way.



OpenRVDAS
● What is it?

● What's special about 
it?

● What can it do?

Core is made up of 
component readers, 
transforms and writers 
that are combined to 
create loggers.

  Writer    Reader  Transform 

Additional servers make it 
easy to assemble, run and 
monitor collections of 
loggers and marshal the 
data they produce.



OpenRVDAS
● What is it?

● What's special about 
it?

● What can it do?

Open - so anyone who wants 
can look inside and mess with 
things that don't work for them.

Modular - so easy to 
modify/extend/keep up to date.

Together, allow "snapping 
together" existing components 
to assemble loggers, creating 
new components as needed.



OpenRVDAS
● What is it?

● What's special about 
it?

● What can it do?

Log sensor data to file.

  LogfileWriter   

 SerialReader 

TimestampTransform 



OpenRVDAS
● What is it?

● What's special about 
it?

● What can it do?

● Parse data into individual 
fields, send out over 
network and write to 
off-machine database.

 LogfileWriter   

SerialReader 

TimestampTransform 

  ParseTransform   

UDPWriter   InfluxDBWriter



OpenRVDAS
● What is it?

● What's special about 
it?

● What can it do?

● Parse data into individual 
fields, send out over 
network and write to 
off-machine database.



OpenRVDAS
● What is it?

● What's special about 
it?

● What can it do?

● Combine and numerically 
manipulate the fields to 
create derived data 
products like true winds or 
moving averages.



OpenRVDAS
● What is it?

● What's special about 
it?

● What can it do?

● Perform basic quality 
checks and raise alarms.

● Use raw or derived values 
to geofence or trigger 
other system state 
changes.



OpenRVDAS Installations



OpenRVDAS
● Introduction - what/why/where
● Loggers 101 - components/running/parsing
● Whole system overview - installation/controlling loggers
● Cached Data Server - fun and games with derived data
● Pain points - cruise configurations/device definitions
● Displaying data - native/InfluxDB+Grafana
● Best practices
● Contributing
● Where to from here?



Installation - basic download

● Clone repo from OceanDataTools on GitHub
● Allows using running individual loggers



Code Orientation
openrvdas/
├── docs
├── local
├── logger
│   ├── listener
│   ├── readers
│   ├── transforms
│   └── writers
│   └── utils
├── server
│   ├── cached_data_server.py
│   ├── lmcmd.py
│   ├── logger_manager.py
│   ├── logger_runner.py
│   ├── logger_supervisor.py
├── test
├── utils



Code Orientation
docs directory contains

● YAML-formatted 
documentation (link)

openrvdas/
├── docs
├── local
├── logger
│   ├── listener
│   ├── readers
│   ├── transforms
│   └── writers
│   └── utils
├── server
│   ├── cached_data_server.py
│   ├── lmcmd.py
│   ├── logger_manager.py
│   ├── logger_runner.py
│   ├── logger_supervisor.py
├── test
├── utils

https://github.com/OceanDataTools/openrvdas/tree/master/docs#where-to-start


Code Orientation
docs directory contains

● YAML-formatted 
documentation

● HTML-formatted module 
docstrings (link)

openrvdas/
├── docs
├── local
├── logger
│   ├── listener
│   ├── readers
│   ├── transforms
│   └── writers
│   └── utils
├── server
│   ├── cached_data_server.py
│   ├── lmcmd.py
│   ├── logger_manager.py
│   ├── logger_runner.py
│   ├── logger_supervisor.py
├── test
├── utils

https://github.com/OceanDataTools/openrvdas/tree/master/docs/html


Code Orientation
docs directory contains

● YAML-formatted 
documentation

● HTML-formatted module 
docstrings

There is also online 
documentation at 
https://openrvdas.org

openrvdas/
├── docs
├── local
├── logger
│   ├── listener
│   ├── readers
│   ├── transforms
│   └── writers
│   └── utils
├── server
│   ├── cached_data_server.py
│   ├── lmcmd.py
│   ├── logger_manager.py
│   ├── logger_runner.py
│   ├── logger_supervisor.py
├── test
├── utils

https://openrvdas.org


Code Orientation
logger directory contains

● components: readers, 
transforms, and writers

● listener that assembles 
and runs the components

openrvdas/
├── docs
├── local
├── logger
│   ├── listener
│   ├── readers
│   ├── transforms
│   └── writers
│   └── utils
├── server
│   ├── cached_data_server.py
│   ├── lmcmd.py
│   ├── logger_manager.py
│   ├── logger_runner.py
│   ├── logger_supervisor.py
├── test
├── utils



Code Orientation
server directory contains

● Servers, surprisingly - 
scripts that monitor, 
communicate with and 
wrangle sets of loggers to 
make sure they do what 
you want them to. 

openrvdas/
├── docs
├── local
├── logger
│   ├── listener
│   ├── readers
│   ├── transforms
│   └── writers
│   └── utils
├── server
│   ├── cached_data_server.py
│   ├── lmcmd.py
│   ├── logger_manager.py
│   ├── logger_runner.py
│   ├── logger_supervisor.py
├── test
├── utils



Running Loggers
● Components

● Hardcoding

● The listen.py command 
line

● Logger configuration 
files

Loggers are composed of 
simple Python components.



Running Loggers
● Hardcoding together

reader = SerialReader(port='/dev/ttys1')
transform = TimestampTransform()                   
writer = LogfileWriter(filebase='/var/logs/knud')
while True:
  in_record = reader.read()
  out_record = transform.transform(in_record)
  writer.write(out_record)



Running Loggers
● The listen.py script - command line specification

listener.py --serial port=/dev/ttys1 \
     --transform_timestamp \
     --transform_prefix knud \
     --write_logfile /var/logs/knud \
     --write_udp 6221

listen.py --help    for all available options



Running Loggers
● The listen.py script with a logger configuration file

listener.py --config_file knud_net.yaml

readers:
  class: SerialReader
  kwargs:
    port: /dev/ttys1
    baudrate: 9600
transforms:
  class: TimestampTransform
writers:
  ...



Configuration Files
● YAML format

● Specify readers, 
transforms and writers

● Run using listen.py with 
--config_file 
argument

readers: 
- class: SerialReader
  kwargs:
    port: /dev/ttys1
    baudrate: 9600
transforms:
- class: TimestampTransform
- class: PrefixTransform
  kwargs:
    prefix: knud
writers:
- class: UDPWriter
  kwargs:
    port: 6224

> listen.py \
  --config_file knud_net.yaml



Build Your Own...            Reader
● Any Python class 

having a read() 
method that returns 
some sort of Python 
object/record/string/
number/DASRecord.

# Read a virtual Magic Eight Ball
class MagicEightBallReader():
  def __init__():
    ...

  # A blocking call
  def read():
    ...
    return result



Build Your Own...            Transform
● Any Python class having 

a transform(record) 
method that takes some 
sort of record as an 
argument and returns 
some sort of record 
(possible 'None').

# Assuming our input is a string, 
# return a scrambled version of it
class ScrambleStringTransform():
  def __init__():
    ...

  def transform(record):
    ...
    return scrambled_record



Build Your Own...            Writer
● Any Python class having a 

write(record) method 
that takes some sort of 
record as an argument 
and...maybe does 
something with it.

(OpenRVDAS doesn't actually 
care what you do with it, as 
long as you're happy.)

# Contact a skywriting agency and
# ask them to send a plane up to
# write the record in the sky in
# smoke
class SkyWriter():
  def __init__(skywriting_agency, 
               aircraft_type):
    ...

  def write(record):
    ...
    



Configuration Files
● listen.py knows 

where to find most 
common components.

● Use module keyword 
to tell it where to find 
any others.

● kwargs specifies the 
component's keyword 
arguments.

# TeaLeafReader implementation
class TeaLeafReader():
  def __init__(tea_type='black',
               temp_in_c=100):
    ...

  def read():
    ...
    return result

Config file:

readers: 
- class: TeaLeafReader
  module: local.tea_leaf_reader
  kwargs:
    tea_type: oolong
    temp_in_c: 95



One Especially Important Transform

ParseTransform()



ParseTransform
● Convert raw ASCII into 

structured data that can be 
reformatted, manipulated 
and displayed

● Can return data as
○ dict of name:value pairs
○ JSON-encoded string
○ OpenRVDAS-specific 

DASRecord object



DASRecords
● Handy container for 

parsed data that includes 
information you might 
want.
○ timestamp
○ named value pair dict
○ metadata from parser

● Has methods for 
comparing, extractring, 
converting to/from JSON 

# Print temp if record has changed
record = DASRecord(my_json_str)

if record.data_id == 'rtmp' and
   not record == old_record:
  print(f'{record.timestamp} '
        f'{record.fields["Temp"]'})

  logfile.write(record.as_json())

  old_record = record



Parsing Data
● RecordParser - takes in strings, returns structured data

● Typical format is "<data_id> <timestamp> <string of values>"



Parsing Data
● Define record format, tell how to parse string of values

 >>> parser = RecordParser(
                 record_format='{data_id:w} {timestamp:ti} {field_string}',
                 field_patterns=['{:d}:{GravityValue:d} {GravityError:d}'])

 



Parsing Data
● RecordParser - takes in strings, returns structured data

 >>> parser = RecordParser(
                 record_format='{data_id:w} {timestamp:ti} {field_string}',
                 field_patterns=['{:d}:{GravityValue:d} {GravityError:d}'])

 >>> parser.parse_record('grv1 2017-11-10T01:00:06.572Z 01:024557 00')
    { 'data_id': grv1
      'timestamp': 1510275606.572,
      'fields':{
        'GravityValue': 24557,
        'GravityError': 0
        }
   }



Parsing Data
● RecordParser - takes in strings, returns structured data

 >>> transform = ParseTransform(
                 record_format='{data_id:w} {timestamp:ti} {field_string}',
                 field_patterns=['{:d}:{GravityValue:d} {GravityError:d}'])

 >>> transform.transform('grv1 2017-11-10T01:00:06.572Z 01:024557 00')
    { 'data_id': grv1
      'timestamp': 1510275606.572,
      'fields':{
        'GravityValue': 24557,
        'GravityError': 0
        }
   }



Parsing Data
● ParseTransform - using stored device definitions

 >>> transform = ParseTransform(
                 definition_path='test/NBP1406/devices/nbp_devices.yaml')

 >>> transform.transform('grv1 2017-11-10T01:00:06.572Z 01:024557 00')
    {
      'data_id': grv1
      'timestamp': 1510275606.572,
      'fields':{
        'GravityValue': 24557,
        'GravityError': 0
        }
    }



Parsing Data
● Devices and Device types

Device type: some category of 
instrument, e.g. a Seapath 330 
or BGM-3 gravimeter.

Device: a specific instance of 
some device type, e.g. the 
BGM-3, serial number 
#BA-BGM3-001055,  installed 
at station 367.5 of your ship.



Parsing Data
● ParseTransform - device types

Gravimeter_BGM3:
  category: "device_type"
  description: "Bell Aerospace BGM-3"
  format: "{CounterUnits:d}:{GravityValue:d} {GravityError:d}"
  fields:
    CounterUnits:
      description: "apparently a constant 01"
    GravityValue:
      units: "Flit Count"
      description: "mgal = flit count x 4.994072552 + bias"
    GravityError:
      description: "unknown semantics"



Parsing Data
● ParseTransform - devices

  >>> parser.parse_record('grv1 2017-11-10T01:00:06.572Z 01:024557 00')

 grv1:
    category: "device"

    device_type: "Gravimeter_BGM3"  

    serial_number: "BA-BGM3-5003155"

    description: "Aft bulkhead 7, station 76.63; serves on /dev/ttys05"

    fields:

      GravityValue: "Grv1Value"

      GravityError: "Grv1Error"



Parsing Data
● ParseTransform - more complex devices

  Seapath330:
    format:
      GGA: "${:2l}GGA,{GPSTime:f},{Latitude:nlat},{NorS:w},{Longitude:nlat},{EorW:w}
      HDT: "${:2l}HDT,{HeadingTrue:f},T*{CheckSum:x}"
      VTG: "${:2l}VTG,{CourseTrue:of},T,{CourseMag:of},M,{SpeedKt:of},N, 
      ZDA: "${:2l}ZDA,{GPSTime:f},{GPSDay:d},{GPSMonth:d},{GPSYear:d},{LocalHours:od
      PSXN20: "$PSXN,20,{HorizQual:d},{HeightQual:d},{HeadingQual:d},{RollPitchQual
      PSXN22: "$PSXN,22,{GyroCal:f},{GyroOffset:f}*{CheckSum:x}"
      PSXN23: "$PSXN,23,{Roll:f},{Pitch:f},{HeadingTrue:f},{Heave:f}*{CheckSum:x}"



Parsing Data
● ParseTransform - parsing formats

   GGA: "${:2l}GGA,{GPSTime:f},{Latitude:nlat},{NorS:w},{Longitude:nlat},{EorW:w}
   VTG: "${:2l}VTG,{CourseTrue:of},T,{CourseMag:of},M,{SpeedKt:of},N, 
      

Under the hood, uses Python  parse module
● recognizes all standard parse formats: f=float, x=hex, etc.
● has been extended in logger/utils/record_parser_formats.py to 

recognize many others: of=optional float, nlat=NMEA-format 
lat/lon, etc.

https://github.com/OceanDataTools/openrvdas/blob/master/logger/utils/record_parser_formats.py


Parsing Data
● Python parse module has many built-in data types

  field_patterns=['{:d}:{GravityValue:d} {GravityError:d}']

  l - Letters (ASCII)
  w - Letters, numbers and underscore
  W - Not letters, numbers and underscore
  s - Whitespace
  S - Non-whitespace
  d - Digits (effectively integer numbers)
  D - Non-digit
  g - General number format (either d, f or e)
  ti - ISO 8601 format date/time e.g. 1972-01-20T10:21:36Z
  ...



Parsing Data
● OpenRVDAS allows adding more parse formats

  og - optional generalized number - also handles '#VALUE!' as None
  ow - optional sequence of letters, numbers, underscores
  nlat - NMEA-formatted latitude or longitude, converted to decimal degrees
  nlat_dir - NMEA-formatted latitude or longitude along with hemisphere 

  ...

    Extra formats defined in logger/utils/record_parser_formats.py



Parsing Data
● RegexParseTransform - new contribution from CSIRO

GGA: \$(?P<TalkerID>\w{2})GGA,\s*(?P<GPSTime>\-?\d*\.?\d*),\s*(?P<Latitude>\-?
HDT: \$(?P<TalkerID>\w{2})HDT,\s*(?P<HeadingTrue>\-?\d*\.?\d*),\s*T\*(?P<Check      
VTG: \$(?P<TalkerID>\w{2})VTG,\s*(?P<CourseTrue>\-?\d*\.?\d*),\s*T,\s*(?P<Cour

Very similar to ParseTransform but, as it says on the tin, 
matches are specified by regex rather than parse format.



Parsing Data - Metadata
● Can tell ParseTransform() to compile and include 

metadata in DASRecords
{'metadata': {'fields': {
  'TSG1Conductivity': {
    'description': 'Conductivity',
    'device': 'tsg1',
    'device_type': 'TSG_SBE45',
    'device_type_field': 'Conductivity',
    'units': 's/m'},
  'TSG1Salinity': {
    'description': 'Salinity',
    'device': 'tsg1',
    'device_type': 'TSG_SBE45',
    'device_type_field': 'Salinity',
    ...



Parsing Data

● Once you've got the parsed numerical/text values from 
records, you can do all sorts of fun things with them.

● We'll talk about this soon.

● Full documentation at 
https://www.oceandatatools.org/openrvdas-docs/parsing/

https://www.oceandatatools.org/openrvdas-docs/parsing/


That's all you need - if...

● ...you're running a small number of loggers.
● ...you never need to turn them off/on or change which 

ones are doing what.



OpenRVDAS
● Introduction - what/why/where
● Loggers 101 - components/running/parsing
● Whole system overview - installation/controlling loggers
● Cached Data Server - fun and games with derived data
● Pain points - cruise configurations/device definitions
● Displaying data - native/InfluxDB+Grafana
● Best practices
● Contributing
● Where to from here?



If you want to...

● ...run and monitor the status of many loggers
● ...change what they're doing based on whether you're in 

port, an EEZ, underway, running winches
● ...graphically monitor and change modes via web interface

Then you probably want the full installation.



What it gets you
● Web interface for 

controlling loggers.

● Cached Data Server for 
integrating/manipulating 
multiple data sources.

● Database-backed 
persistent state 
management.



What it gets you
● Web interface for 

controlling loggers.

● Cached Data Server for 
integrating/manipulating 
multiple data sources.

● Database-backed 
persistent state 
management.



What it gets you
● Web interface for 

controlling loggers.

● Cached Data Server for 
integrating/manipulating 
multiple data sources.

● Database-backed 
persistent state 
management.

Data
base

Logger
Manager

Logger
s

Logger
sloggers

My Favorite 
Front-End



Controlling loggers
● Default web interface.

● Command line interface.

● RESTful API so you can roll 
your own.



Controlling loggers
● Default web interface.

● Command line interface.

● RESTful API so you can roll 
your own.

openrvdas> server/logger_manager.py 

command? load_configuration 
NBP1406_cruise.yaml
command? get_modes
Available Modes: off, monitor, log, log+db

command? set_active_mode underway
command? get_loggers
Loggers: PCOD, cwnc, gp02, gyr1, adcp, eng1, 
svp1, twnc, mbdp, knud, grv1, mwx1, pco2, 
pguv, s330, tsg1, rtmp, hdas, tsg2, seap, 
true_wind, subsample

command? get_logger_configs s330
Configs for s330: s330->off, s330->net, 
s330->file/net, s330->file/net/db

command? set_active_logger_config s330 
s330->off
command? quit



Controlling loggers
● Default web interface.

● Command line interface.

● RESTful API so you can 
roll your own.
○ Django or SQLite



A Peek Behind the Scenes

● Installation script sets up files in /etc/supervisor/conf.d to 
run a bunch of servers:

rvdas@openrvdas:/opt/openrvdas$ supervisorctl status
logger_manager         RUNNING   pid 2728950, uptime 116 days, 7:28:34
cached_data_server     RUNNING   pid 2728944, uptime 116 days, 7:28:34
django:nginx           RUNNING   pid 3079419, uptime 81 days, 2:10:23
django:uwsgi           RUNNING   pid 3079420, uptime 81 days, 2:10:23
simulate:simulate_nbp  RUNNING   pid 2728953, uptime 116 days, 7:28:34



Setting up a Cruise
● Build a cruise configuration

○ configurations

○ loggers

○ modes

seap-net:
  readers: 
  - class: SerialReader
    kwargs:
      baudrate: 9600
      port: /tmp/tty_seap
  transforms:
  - class: TimestampTransform
  - class: PrefixTransform
    kwargs:
      prefix: seap
  writers:
  - class: UDPWriter
    kwargs:
      port: 6224



Setting up a Cruise
● Build a cruise configuration

○ configurations

○ loggers

○ modes

seap-file+net:
  readers: 
  - class: SerialReader
    kwargs:
      baudrate: 9600
      port: /tmp/tty_seap
  transforms:
  - class: TimestampTransform
  - class: PrefixTransform
    kwargs:
      prefix: seap
  writers:
  - class: LogfileWriter
    kwargs:
      filebase: /var/data/raw/seap
  - class: UDPWriter
    kwargs:
      port: 6224



Setting up a Cruise
● Build a cruise configuration

○ configurations

○ loggers

○ modes

seap-off:{}
  



Setting up a Cruise
● Build a cruise configuration

○ configurations

○ loggers

○ modes

configs:
  seap-off:
    ...
  seap-net:
    ...
  seap-file+net:
    ...

  knud-off:
    ...
  knud-net:
    ...
  knud-file+net:
    ...
 
  rtmp-off:
    ...



Setting up a Cruise
● Build a cruise configuration

○ configurations

○ loggers

○ modes

loggers:
  seap:
    configs:
    - seap-off
    - seap-net
    - seap-net+file
  knud:
    configs:
    - knud-off
    - knud-net
    - knud-net+file
  rtmp:
    configs:
    - rtmp-off
    - rtmp-net
    - rtmp-net+file



Setting up a Cruise
● Build a cruise configuration

○ configurations

○ loggers

○ modes

modes:
  'off':
    seap: seap-off
    knud: knud-off
    rtmp: rtmp-off
    ...
  port:
    seap: seap-net
    knud: knud-off
    rtmp: rtmp-net
    ...
  eez:
    seap: seap-net
    knud: knud-net
    rtmp: rtmp-net
    ...
  underway:
    seap: seap-net+file
    knud: knud-net+file
    rtmp: rtmp-net+file
    ...



Setting up a Cruise - Pain Points

● Full cruise configuration files can be mind-numbingly long

● Creating/Editing/Modifying them can be error prone

We'll talk later about some tools and strategies that help

But first, how to do some of the fun and powerful stuff!



OpenRVDAS
● Introduction - what/why/where
● Loggers 101 - components/running/parsing
● Whole system overview - installation/controlling loggers
● Cached Data Server - fun and games with derived data
● Pain points - cruise configurations/device definitions
● Displaying data - native/InfluxDB+Grafana
● Best practices
● Contributing
● Where to from here?



Cached Data Server
● An OpenRVDAS-specific 

pub-sub server in the 
servers/ subdirectory.

● Installed and run as part of 
standard installation.

● Used to manage status 
messages, but can also use 
for sensor data.



Cached Data Server
● Loggers can write to it via 

CachedDataWriter

● Loggers can read from it via 
CachedDataReader

● Use for derived values
○ read from server
○ compute
○ write results back to 

server or send 
elsewhere

DerivedDataTransform

CachedDataReader

CachedDataWriter



CachedDataReader
● Connects to CDS via 

websocket.

● Subscribes to values of 
interest, returns them when 
new values show up.

  - class: CachedDataReader
    kwargs:
      data_server: localhost:8766
      subscription:
        fields:
          S330CourseTrue:
            seconds: 0
          S330HeadingTrue:
            seconds: 0
          S330SpeedKt:
            seconds: 0
          MwxRelWindDir:
            seconds: 0
          MwxRelWindSpeed:
            seconds: 0
 



CachedDataReader
● Connects to CDS via 

websocket,

● Subscribes to values of 
interest, returns them when 
new values show up.

  - class: CachedDataReader
    kwargs:
      data_server: localhost:8766
      subscription:
        fields:
          S330CourseTrue:
            seconds: 0
          
Acceptable values for 'seconds':
 0  - provide only new values that arrive after 
subscription
-1  - provide the most recent value, and then 
all future new ones
num - provide num seconds of back data, 
then all future new ones

If 'seconds' is missing, use '0' as the default.



True Winds
● Depends on

○ heading
○ course over ground
○ speed over ground
○ relative wind speed
○ relative wind dir



True Winds
● Depends on

○ heading
○ course over ground
○ speed over ground
○ relative wind speed
○ relative wind dir

true_wind-on:
  readers:
  - class: CachedDataReader
    kwargs:
      data_server: localhost:8766
      subscription:
        fields:
          S330CourseTrue:
            seconds: 0
          S330HeadingTrue:
            seconds: 0
          S330SpeedKt:
            seconds: 0
          MwxRelWindDir:
            seconds: 0
          MwxRelWindSpeed:
            seconds: 0
  transforms:
  - class: TrueWindsTransform
    kwargs:
      ...



True Winds
● Depends on

○ heading
○ course over ground
○ speed over ground
○ relative wind speed
○ relative wind dir

● Send records to 
TrueWindsTransform

● Transform calls routines in  
logger/utils/truewinds

class: TrueWindsTransform
kwargs:
  heading_field: Gyr1HeadingTrue
  course_field: S330CourseTrue
  speed_field: S330SpeedKt
  wind_speed_field: MwxRelWindSpeed
  wind_dir_field: MwxRelWindDir

  convert_speed_factor: 0.5144 

  true_speed_name: TrueWindSpeed
  true_dir_name: TrueWindDir
  apparent_dir_name: ApparentWindDir

  update_on_fields:
  - MwxRelWindDir
  max_field_age:
    S330CourseTrue: 15
    S330HeadingTrue: 15
    S330SpeedKt: 15
    MwxRelWindDir: 15
    MwxRelWindSpeed: 15



True Winds
● TrueWindsTransform 

takes DASRecords and 
looks for the values it needs 
in them.

TrueWindsTransform

None

● Caches values for next time.

● Outputs None if it doesn't 
have all the values it needs.

● Outputs a DASRecord if it 
does find all the values it 
needs.



Snapshots
● Much of the power of the 

architecture comes from the 
open-ended definition of 
transforms and writers.

● You pass a record to a 
transform and it gives you 
a record (possibly 'None') 
back.

readers
- class: CachedDataReader
  kwargs:
    ...

transforms:
- class: InterpolationTransform
  kwargs:
    ...

writers:
- class: CachedDataWriter
  kwargs:
    ...



Snapshots
● Use this to aggregate 

values until ready to 
produce an output.

● E.g. when computing 
running averages.

- class: InterpolationTransform
  module:
   logger.transforms.interpolation_t
  kwargs:
    interval: 30
    window: 30
    field_spec:
      AvgRTMPTemp:
        source: RTMPTemp
        algorithm:
          type: boxcar_average
          window: 30
      AvgTrueWindDir:
        source: TrueWindDir
        algorithm:
          type: polar_average
          window: 30
    ....



Snapshots
● Use this to aggregate 

values until ready to 
produce an output.

● E.g. when computing 
running averages.



Quality Control using the CDS

readers:
- class: CachedDataReader
  kwargs:
    subscription:
      fields:
       TWNCTension: {seconds: 0}, TWNCPayout: {seconds: 0}
transforms:
- class: QCFilterTransform
  kwargs:
    bounds: TWNCTension:-150:10000,TWNCPayout:-60:175000
writers:
- class: AlertWriter
- class: LogfileWriter
  kwargs:
    filebase: /var/log/openrvdas/winch_errors



Quality Control using the CDS

readers:
- class: CachedDataReader
  kwargs:
    subscription:
      fields:
       Gyr1HeadingTrue: {seconds: 0}
writers:
- class: TimeoutWriter
  kwargs:
    timeout: 60
    message: No Gyro data received for 60 seconds
    resume_message: Gyro data has resumed
    writer:
    - class: LogfileWriter
      kwargs:
        filebase: /var/log/openrvdas/winch_errors

A writer that takes other 
writers as an argument?!? 



ComposedWriters
● Basic architecture is an 

"hourglass"
○ Readers in parallel
○ Transforms in series
○ Writers in parallel

● Means that all data go 
through same set of 
transforms.

Reader 1 Reader 2 

Transform 1

Transform 2

Transform 3

Writer 1 Writer 2 Writer 3 



ComposedWriters
● But sometimes you want to 

do two incompatible 
transforms on the same 
data.

● E.g. save raw to file, but add 
instrument prefix to data 
sent out over network.

SerialReader

TimestampTransform

LogfileWriter

 

 

PrefixTransform

UDPWriter



ComposedWriters
● Allow you to package up

○ one or more transforms 
applied to

○ one or more specific 
writers.

SerialReader

TimestampTransform

LogfileWriter

 

 

PrefixTransform

UDPWriter

ComposedWriter



Geofencing
● USAP can't record data 

inside Argentine EEZ unless 
and Argentinian observer is 
on board.

● Need to manually switch 
from no-write to write 
when crossing EEZ 
boundary.

● Can we do it automatically?



Geofencing
● Two new modules:

○ GeofenceTransform
○ LoggerManagerWriter

- class: GeofenceTransform
  module: 
    logger.transforms.geofence_transform
  kwargs:
    latitude_field_name: s330Latitude
    longitude_field_name: s330Longitude
    boundary_file_name: /tmp/eez.gml
    leaving_boundary_message: 

  set_active_mode write
    entering_boundary_message:    
      set_active_mode no_write



Geofencing
● Two new modules:

○ GeofenceTransform
○ LoggerManagerWriter

- class: GeofenceTransform
  module: 
    logger.transforms.geofence_transform
  kwargs:
    latitude_field_name: s330Latitude
    longitude_field_name: s330Longitude
    boundary_file_name: /tmp/eez.gml
    leaving_boundary_message: 

  set_active_mode write
    entering_boundary_message:    
      set_active_mode no_write

writers:
- class: LoggerManagerWriter
  module: 
    logger.writers.logger_manager_writer
  kwargs:
    database: django
    allowed_prefixes:
    - 'set_active_mode '



transforms:
- class: QCFilterTransform
  kwargs:
    bounds: 'RTMPTemp:-10:40'
    message: 'set_active_logger_config rtmp rtmp-off'
writers:
- class: LoggerManagerWriter
  kwargs:
  ...

● Can use to change any system state based on data values 

Fun and Games with LoggerManagerWriter 



Okay, enough fun - where are the pain points?



OpenRVDAS
● Introduction - what/why/where
● Loggers 101 - components/running/parsing
● Whole system overview - installation/controlling loggers
● Cached Data Server - fun and games with derived data
● Pain points - cruise configurations/device definitions
● Displaying data - native/InfluxDB+Grafana
● Best practices
● Contributing
● Where to from here?



Pain Points
● Creating cruise configuration 

files.

● Creating device definitions.



Pain Points

● Creating cruise configuration 
files.

● Creating device definitions.

Cruise configuration files contain: 

● Definition of configurations.
● Which config is associated 

with which logger.
● Which config of which 

logger is associated with 
each cruise mode.



Pain Points

● Creating cruise configuration 
files.

● Creating device definitions.

● Each logger may have 2-4 
configurations.

● Each configuration may be 
10-40 lines long.

● A typical ship may have 
10-40 sensors.

Typical cruise configuration can 
be thousands of lines long.

Painful and error-prone to create 
and maintain manually.



Pain Points

● Creating cruise configuration 
files.

● Creating device definitions.

When you add a new logger you 
need to modify three sections:

logger - add the name, and 
names of each config associated 
with it.

configs - definitions of the 
named configs themselves.

modes - which config should be 
active for which logger in which 
mode.



 gnss->file: &gnss_base
    readers: {class: UDPReader, kwargs: {port: 9117}}
    transforms:
      - class: SplitTransform
        module: logger.transforms.split_transform
      - class: TimestampTransform
    writers:
      - class: LogfileWriter
        kwargs:
          filebase: data/raw/gnss

● Use YAML macros to reduce duplication

Cruise Creation Tools



 gnss->file+net:
    <<: *gnss_base
    writers:
    - class: LogfileWriter
      kwargs:
        filebase: data/raw/gnss
    - class: UDPWriter
      kwargs:
        port: 6224

● Use YAML macros to reduce duplication

Cruise Creation Tools



local/usap/create_cruise.py \
    test/NBP1406/NBP1406_port_defs.yaml \
    > test/NBP1406/NBP1406_cruise.yaml

(See test/NBP1406/NBP1406_port_defs.yaml for port 
definitions) 

● Python scripts such as local/usap/create_cruise.py

Cruise Creation Tools

https://github.com/OceanDataTools/openrvdas/blob/master/test/NBP1406/NBP1406_port_defs.yaml
https://github.com/OceanDataTools/openrvdas_usap/blob/main/create_cruise.py


● Template logger_config.template in repo 
OceanDataTools/FIO-ODT-Configs

● Filled out by  build_openrvdas_config.sh script 

● Or combination: script + macros, as Florida does:

Cruise Creation Tools

https://github.com/OceanDataTools/FIO-ODT-Configs/blob/main/openrvdas/etc/logger_config.template
https://github.com/OceanDataTools/FIO-ODT-Configs/tree/main/openrvdas


Code in  utils/jinja_config_creator.

● Jinja-based templating, courtesy of 
Ella Pietraroia @ CSIRO

Cruise Creation Tools

https://github.com/OceanDataTools/openrvdas/tree/master/utils/jinja_config_creator


● Uses OpenRVDAS for core data collection.
● Wraps a lot of handy cruise management tools around it.
● E.g.: device database management

○ all devices and feeds managed in database.
○ update device in db using GUI
○ scripts propagate that update into a new cruise 

configuration script.

● Full shipboard and ship-to-shore datapresence system 
developed at OSU by Chris Romsos, Jasmine Nahorniak et al.

CORIOLIX



Pain Points

● Creating cruise configuration 
files.

● Creating device definitions.

Reading from device generally 
isn't a problem, so long as it 
communicates via
● UDP
● serial port
● MQTT
● Modbus
● TCP
● websockets

The challenge is often parsing 
the raw records that come from 
the device.



OpenRVDAS
● Introduction - what/why/where
● Loggers 101 - components/running/parsing
● Whole system overview - installation/controlling loggers
● Cached Data Server - fun and games with derived data
● Pain points - cruise configurations/device definitions
● Displaying data - native/InfluxDB+Grafana
● Best practices
● Contributing
● Where to from here?



Okay, a little more 
fun: Displaying Data

● Native display widgets + 
Highcharts

● InfluxDB + Grafana



● Based on native JavaScript + 
Highcharts (or open source D3).

● Allows embedding displays in 
any web page.

● Note: Highcharts is proprietary 
commercial product, free to use 
for universities and non-profits.

● Original OpenRVDAS display method

Display Widgets



● On page: define a div container 
where you want widget.

● In JavaScript
○ define widget and its fields 

and parameters.
○ pass all widgets to a 

WidgetServer.
● API makes creation/integration 

of new widget types easy.

● Original OpenRVDAS display method

Display Widgets



Display Widgets
<div id="pitch-roll"></div>

<script type="text/javascript">
  var line_fields = {
    S330Pitch: {name: "Pitch",
                seconds: 30},
    S330Roll: {name: "Roll",
               seconds: 30}
  };

  var pr_widget = new 
    TimelineWidget('pitch-roll',
                   line_fields,
                   'Degrees'));

  var widget_server = new
    WidgetServer([pr_widget],
                 'localhost:8766');
  widget_server.serve();
</script>



InfluxDB/Grafana

● Now preferred display route:
○ open source
○ large community of 

users and maintainers 
(who aren't us!).

● Two separate packages:
○ InfluxDB - time series 

database we write to.
○ Grafana - analytics, 

monitoring and 
visualization system.



InfluxDB/Grafana

● Getting data into InfluxDB 
works just the way you'd 
think...

 netreader-on+influx:
    readers:
    - class: UDPReader
      kwargs:
        port: 6224

    transforms:
    - class: ParseTransform
      kwargs:
        definition_path: test/NBP1406/d

    writers:
    - class: CachedDataWriter
      kwargs:
        data_server: localhost:8766
    - class: InfluxDBWriter
      kwargs:
        bucket_name: openrvdas



● Should be run as the user who will be running 
OpenRVDAS (e.g. 'rvdas').

● Script: utils/install_influxdb.sh

Installing InfluxDB/Grafana



● Traditionally, OpenRVDAS 
writes to InfluxDB, Grafana 
reads from InfluxDB.

● For time-critical displays, 
can have Grafana directly 
use CDS as source.

● Source and instructions in 
contrib repo

Another NIWA contribution: get Grafana to use CDS as datasource

Hot off the presses: CDS⇒Grafana displays

https://github.com/OceanDataTools/openrvdas_contrib/blob/94720b5940e2925237a9fe7fdeb815857cf743fe/contrib/niwa/grafana/cache-datasource/README.md
https://github.com/OceanDataTools/openrvdas_contrib/blob/94720b5940e2925237a9fe7fdeb815857cf743fe/contrib/niwa/grafana/cache-datasource/README.md


from(bucket: "openrvdas")
   |> range(start: -5m)   |> filter(
       fn: (r) => r["_measurement"] == "gyro_furuno_heading" or r["_measurement"] == "mru_trimble_bx992", )
   |> filter( fn: (r) => r["_field"] == "Gyro_HeadingTrue" or r["_field"] == "Trimble_BX992_HeadingTrue",)
   |> aggregateWindow(every: 2s, fn: last, createEmpty: true)
   |> map(
     fn: (r) => ({
       _time: r._time, _field: r._field,
       _measurement: "qa_alerts",
       _value: if not exists r._value then
                 -1
               else if r._value >= 0 and r._value < 360 then
                  1
               else
                  0,
       sensor: r.sensor, }),   )
   |> to(bucket: "qa_flags")

InfluxDB Tasks can make queries, produce conditional outputs

Other fun: InfluxDB for Quality Control



● TimescaledbWriter, contributed by Lewis Wilke (NIWA) in 
github.com/OceanDataTools/openrvdas_contrib

● RedisWriter

● PostgreWriter and CORIOLIXWriter, contributed by 
Jasmine Nahorniak (OSU) in 
github.com/OceanDataTools/openrvdas_rcrv

Other storage and display paths



● RESTful API, SQLite API make it easy to build your own 
interface for controlling and monitoring loggers.

Other interfaces



● Kevin Pedigo (USAP) SQLite-based GUI at 
https://github.com/OceanDataTools/sqlite_gui

● Lewis Wilkie (NIWA) RESTful GUIs

● RESTful API, SQLite API make it easy to build your own 
interface for controlling and monitoring loggers.

Other interfaces



Other interfaces



Other interfaces



Other interfaces



OpenRVDAS
● Introduction - what/why/where
● Loggers 101 - components/running/parsing
● Whole system overview - installation/controlling loggers
● Cached Data Server - fun and games with derived data
● Pain points - cruise configurations/device definitions
● Displaying data - native/InfluxDB+Grafana
● Best practices
● Contributing
● Where to from here?



Best Practices

● Logger design:
○ front line loggers should 

timestamp/save raw 
data and do little else

○ propagate simplest way 
can manage

readers:
  - class: SerialReader
    kwargs:
      port: /tmp/tty_rtmp
transforms:
  - class: TimestampTransform
writers:
  - class: LogfileWriter
    kwargs:
      filebase: /var/tmp/log/rtmp/raw/r
  - class: ComposedWriter
    kwargs:
      transforms:
      - class: PrefixTransform
        kwargs:
          prefix: rtmp
      writers:
      - class: UDPWriter
        kwargs:
            port: 6224



Best Practices

● Logger design:
○ front line loggers should 

timestamp/save raw 
data and do little else

○ propagate simplest way 
can manage

○ use second line "loggers" 
to parse and do more 
complicated processing.

readers:
  - class: UDPReader
    kwargs:
      port: 6224
transforms:
  - class: ParseTransform
    kwargs:
      metadata_interval: 10
      definition_path: test/NBP1406/dev
writers:
  - class: CachedDataWriter
    kwargs:
      data_server: localhost:8766
  - class: InfluxDBWriter
    kwargs:
      bucket_name: openrvdas



Best Practices

● Parsing
○ single parser handling all 

data is usually sufficient 
unless huge. data rates 
(e.g. winches)

○ simplifies cruise 
configurations.

readers:
  - class: UDPReader
    kwargs:
      port: 6224
transforms:
  - class: ParseTransform
    kwargs:
      metadata_interval: 10
      definition_path: test/NBP1406/dev
writers:
  - class: CachedDataWriter
    kwargs:
      data_server: localhost:8766
  - class: InfluxDBWriter
    kwargs:
      bucket_name: openrvdas



Best Practices

● Partition functionality
○ One machine running 

loggers, one running 
InfluxDB/Grafana, etc.

○ Relay between using 
UDP or CDS - UDP very 
lightweight and seems 
reliable enough.



Best Practices

● Partition functionality
○ Consider having one 

machine running 
frontline loggers, 
another running second 
line.



Best Practices

● Code organization
○ Create your own repo for 

ship/institution-specific 
code.

○ Check out into /opt/
○ Symlink into 

/opt/openrvdas/local

/opt/openrvdas_usap/
    \_devices/

/opt/openrvdas/local



OpenRVDAS
● Introduction - what/why/where
● Loggers 101 - components/running/parsing
● Whole system overview - installation/controlling loggers
● Cached Data Server - fun and games with derived data
● Pain points - cruise configurations/device definitions
● Displaying data - native/InfluxDB+Grafana
● Best practices
● Contributing
● Where to from here?



● Bug reports/feature requests: 
https://github.com/OceanDataTools/openrvdas/issues

● New code: 
https://github.com/OceanDataTools/openrvdas_contrib

Because sharing is caring!  ❤

Contributing to OpenRVDAS

https://github.com/OceanDataTools/openrvdas/issues
https://github.com/OceanDataTools/openrvdas_contrib


Where to from here?



Where to from here?

● New, improved modules
○ SealogWriter/SealogReader
○ ValueFilterTransform

● Expanded documentation
○ Video tutorials
○ Cookbook

● The easy parts



Where to from here?

● Simplified logger/cruise configuration creation and 
maintenance.
○ Jinja has been a good start
○ Graphical tools?

● Solution for long-term project support

● The harder parts



Long Term Ocean Data Tools Support

● Current support comes from individual contracts

● Improvements and ongoing maintenance are largely 
volunteer (Thank you, NIWA, CSIRO and USAP!)

● Does it make sense to get affiliated with or absorbed by 
an institution?


