Tilt and Compliance Removal: **Community Tools Enabling Science**

HELEN JANISZEWSKI UNIVERSITY OF HAWAI'I AT MĀNOA JOSH RUSSELL SYRACUSE UNIVERSITY

MSROC EARLY CAREER WORKSHOP, AGU 2023

Syracuse University MARQUESAS ISLANDS, OLD ORCA RECOVERY CRUISE, NOVEMBER 2020

WHY OCEAN-BOTTOM SEISMOLOGY?

Schaeffer & Lebedev (2013) GJI

WHY OCEAN-BOTTOM SEISMOLOGY?

Draft SZ4D Implementation Plan

Kohler et al., 2020

TIMESERIES AND SPECTRA

$$G_{xy}(f) = \frac{1}{n_d} \sum_{i=1}^{n_d} X_i^*(f) Y_i(f)$$

$$\gamma_{xy}^2(f) = \frac{|G_{xy}(f)|^2}{G_{xx}(f)G_{yy}(f)}$$

Cross/Auto Spectra Power Spectra

What is the power/ amplitude of the time series at a given frequency?

Coherence

At a given frequency, how "coherent" are two signals? How much of y can I predict, if I know x?

$$A_{xy}(f) = \frac{|G_{xy}(f)|}{G_{xx}(f)} \qquad q$$

$$\phi_{xy}(f) = \arctan\left[\frac{Q_{xy}(f)}{C_{xy}(f)}\right]$$

Admittance

Gain factor of the *transfer function*. If I want to relate the x and y components, what constant do I multiply as a function of frequency?

Phase

If the signals are coherent, what's the cycle separation between x and y?

OBS data are relatively noisy, in part due to compliance and tilt noise.

Tilt Noise = Coherent **Horizontal** energy observed on **Vertical** channel

Compliance Noise = Coherent **Pressure** energy observed on **Vertical** channel

OBS data are relatively noisy, in part due to compliance and tilt noise.

Compliance Noise = Coherent **Pressure** energy observed on **Vertical** channel

Tilt Noise = Coherent Horizontal energy observed on Vertical channel

Infragravity waves induce compliance noise, which has a frequency-depth dependence.

OBS data are relatively noisy, in part due to compliance and tilt noise.

Bottom currents cause tilt noise, which may vary with water depth and instrument design.

Crawford et al., 1999

Frequency (Hz)

Infragravity waves induce compliance noise, which has a frequency-depth dependence.

Tilt Noise = Coherent **Horizontal** energy observed on Vertical channel

OBS data are relatively noisy, in part due to compliance and tilt noise.

Bottom currents cause tilt noise, which may vary with water depth and instrument design.

Crawford et al., 1999

Frequency (Hz)

Infragravity waves induce compliance noise, which has a frequency-depth dependence.

Tilt and compliance noise can be removed from vertical components, improving data quality.

TILT AND COMPLIANCE WORKFLOW

DAD	a0_make_startt
DOWNLO	a1_download_
PRE PROCESSING	a2_daydata_prep
DAILY SPECTRAL ANALYSIS AND QUALITY CONTROL	b1_dailys
DEPLOYMENT SPECTRAL ANALYSIS AND QUALITY CONTROL	b2_cleans
TRANSFER FUNCTION CALCULATION	b3_calctr
TILT AND COMPLIANCE REMOVAL	

ATaCR Manual

Automated Tilt and Compliance Removal

Figure 1: Flowchart for using the **ATaCR** Package.

15 YEARS 18 EXPERIMENTS 551 OBS

0° —

40°N

Geophysical Journal International

Geophys. J. Int. (2023) **233,** 297–315 Advance Access publication 2022 November 25 GJI Seismology https://doi.org/10.1093/gji/ggac450

¹ SEGMENT

Broad-band ocean bottom seismometer noise properties

Helen A. Janiszewski[®],¹ Z. Eilon,² J.B. Russell[®],³ B. Brunsvik,² J.B. Gaherty,⁴ S.G. Mosher,⁵ W.B. Hawley⁶ and S. Coats¹

15 YEARS 18 EXPERIMENTS 551 OBS ~50 - 6000 M 3 SEISMOMETERS 8 OBS DESIGNS

OBSIC

SEISMOMETER AND WATER DEPTH

Metadata Parameter

Seismometer and water depth offer the next two sets of most similar groupings.

Less direct covariance with other parameters yields more interpretable results.

COHERENCES, WATER DEPTH, COMPLIANCE

Crawford et al., 1999

Frequency (Hz)

10⁻²

10⁻¹ Frequency (Hz) **10**⁰

ATACR-ENABLED SCIENCE

COMPLIANCE CORRECTIONS APPLIED TO AMBIENT NOISE

Vertical

Pressure

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

0.1

0.9

0.8

0.6

0.5

0.3

0.2

0.1

Example from the Young ORCA experiment

Vertical component

– Fundamental mode Rayl. (5–25 s)

- Short periods = water column
- Longer periods = solid earth
- 1st overtone Rayl. (3–?)
 - Solid earth!

Pressure component

- Fundamental mode Rayl. (5–25 s)
 - Short periods = water column
 - Longer periods = solid earth

Fundamental mode Rayleigh waves coherent on both Pressure and Vertical

Russell et al. (in prep)

COMPLIANCE CORRECTIONS APPLIED TO AMBIENT NOISE

Vertical

THE POWER OF OVERTONE RAYLEIGH WAVES: **CHARACTERIZING THE OCEANIC LITHOSPHERE**

In-situ characterization of oceanic lithosphere petrofabrics

Direct comparisons with laboratory deformed olivine samples indicate **D-type LPO**

Near-ridge deformation dominated by dislocation-assisted grain **boundary sliding** processes implying grain-size dependent deformation

Russell et al (2022)

TILT CORRECTIONS APPLIED TO AMBIENT NOISE

At the ENAM experiment, removing tilt noise prior to ambient-noise correlations improved SNR of primary microseism by a factor of ~2 on average and up to a factor of ~10 in some cases

ENAM Experiment

Russell & Gaherty (2021)

TILT CORRECTIONS APPLIED TO AMBIENT NOISE

At the ENAM experiment, removing tilt noise prior to ambient-noise correlations improved SNR of primary microseism by a factor of ~2 on average and up to a factor of ~10 in some cases

ENAM Experiment

Russell & Gaherty (2021)

DENOISED OBS RECORDS IMPROVE IMAGING CAPABILITIES

IMPORTANCE OF ACCURATE OBS AMPLITUDES: SEISMIC ATTENUATION

Russell et al. (in prep)

Poster Monday Afternoon: DI13B-0032

LOCAL SITE AMPLIFICATION

Strong site amplification observed at the Juan de Fuca ridge.

Zero-crossings in Vs sensitivity imply better **sensitivity to discontinuities** compared to phase velocity

Complimentary sensitivity to shallow **Vp/Vs** and **density**

- Organization of melt?
- Shallow cracks?
- Hydrothermal circulation?

Russell & Dalton (2022)

Lin et al. (2012)

OTHER OBS TOOLS

(all on GITHUB)

OBSrange Locating OBS on seafloor

Russell, Eilon, & Mosher (2019)

OBSclockdrift

Estimating and correcting clock drift

Josh Russell, GITHUB

OrientPy Determining OBS orientations

Station YH.LOBS3: $\phi = 123.0 \pm 4.0$

Pascal Audet, GITHUB

NoiseCut

Denoising using Music Information Retrieval Algorithms

accessibility to OBS data, leading to wider usage and new discoveries — transformative for the community

Tilt and compliance corrections in particular are useful (and often necessary) for many OBS applications

- Teleseismic surface-wave imaging
- Ambient noise imaging
- Teleseismic body-wave travel-time tomography
- Receiver function imaging

In the last decade, development of **community-driven tools** have improved the

CHUBLNKS

ATaCR: https://github.com/helenjanisz/ATaCR ATaCR for Ambient Noise: https://github.com/jbrussell/ATaCR/tree/correct_noise **OBSrange** (locating OBS on seafloor): <u>https://github.com/jbrussell/OBSrange</u> **OBStools**: <u>https://github.com/nfsi-canada/OBStools</u> **OrientPy** (determine OBS orientations): <u>https://github.com/nfsi-canada/OrientPy</u> **OBSclockdrift**: <u>https://github.com/ibrussell/OBSclockdrift</u> **NoiseCut**: <u>https://github.com/ZahraZali/NoiseCut</u>

COMMONLY USED FREQUENCY BANDS

Let's add a few more deployments...

ENAM still looks anomalous relative to other deployments.

SIO ABALONE O WHOI BB

× SIO 240 BB

🛆 WHOI ARRA

WHOI KECK

BLANCO

nstrume AB B2 BA BD TRM AR BG	ent Design:
BG	
KE	

SCOOBA

COMPLIANCE CORRECTIONS

Bowden et al., 2016

COMPLIANCE CORRECTIONS APPLIED TO AMBIENT NOISE

Removing tilt and compliance at 5-10 s yields enhanced first overtone signal in some deployments, but not others. **Why?**

COMPLIANCE CORRECTIONS APPLIED TO AMBIENT NOISE

Removing tilt and compliance at 5-10 s yields enhanced first overtone signal in some deployments, but not others. **Why?**

Best guesses: Different noise environment in Atlantic v. Pacific and/or thickly sedimented margin.

