

Toward "full-wavelength imaging" of oceanic crust using <u>full waveform inversion</u> of active-source seismic data

Andres

Hanchao Jian (hjian@whoi.edu)

in collaboration with Drs. J. Pablo Canales (WHOI), Satish Singh (IPGP), Mladen Nedimović (Dalhousie Univ.) and others MSROC Early Career Workshop San Francisco, December 9, 2023

Active-source marine seismic survey - instruments

High-resolution imaging of oceanic crust demands active-source survey with two types of receivers:

- Multi-channel streamer (MCS):
 - ✓ High density (receiver spacing of 10-20m)
 - X Floating on sea surface
 - X Limited offset (maximum offset 3-15 km)
- □ Ocean bottom seismometer (OBS):
 - Record on seafloor
 - Large offset (tens to hundreds km)
 - X Low density (typical instrument spacing 3-20 km)

Active-source marine seismic survey – data example

A MCS common-shot gather

3

Active-source marine seismic survey – conventional processing

- Traveltime tomography using OBS data constrains the crustal and upper mantle structures with spatial resolution up to 2 km.
- □ <u>Reflection images of the MCS data</u> reveal sharp reflectors (Canales et al., 2017, *Geology*).

Active-source marine seismic survey – conventional processing

- Traveltime tomography using OBS data constrains the crustal and upper mantle structures with spatial resolution up to 2 km.
- □ <u>Reflection images of the MCS data</u> reveal sharp reflectors (Canales et al., 2017, *Geology*).

Towards "full-wavelength imaging" of oceanic crust

- Conventional marine seismic data analysis leads to Huge resolution gap that impedes the understanding of important features and processes, such as:
 - Hydrothermal pathway
 - □ Fault distribution
 - Magma transport
 - □ Fluid drainage from subducting plate
 - \square And more ...

Active-source marine seismic survey – example data & result

Downward Extrapolation & Travel Time Tomography of MCS data

Downward extrapolation (Arnulf et al., 2011, GRL, Harding et al., 2016, G-cubed) acts as:

- Migration operator: bring near-offset refraction ahead seafloor reflection.
- Coherency filter: enhance SNR, accelerate travel time picking efficiency by > 10 times.

Benefit: more high-quality crustal arrivals can be used in travel time and waveform inversion.

 $d(x_s, x_{r'}) = \int_{D(R)} d(x_s, x_r) \otimes G^*(x_{r'}, x_r)$ Downward Continuation

 $d(x_s, x_r)$

 $\square \quad d(x_s, x_{r'})$

Upward propogation

(Huygens' principle)

S

CASE I - Image hydrothermal pathways in Rainbow hydrothermal field

Across-axis distance (km)

Vaddineli, Jian and Singh, in prep.

Towards "full-spectral imaging" of oceanic crust

- Conventional marine seismic data analysis
 - □ OBS traveltime tomography
 - □ MCS reflection imaging
- MCS tomography and full waveform inversion after Downward extrapolation
 - Due to the high density of MCS data, the shallow crustal structure can be almost "perfectly" recovered using the multiscale inversion strategy
 - The larger depth where no coverage from MCS refraction data, however, still exhibits the resolution gap

CASE III – Nova Scotian rifted margin

CASE III – Nova Scotian rifted margin: FWI of OBS wide-angle arrivals

Towards "full-wavelength imaging" of oceanic crust

- Conventional marine seismic data analysis
 - □ OBS traveltime tomography
 - □ MCS reflection imaging
- MCS tomography and full waveform inversion after Downward extrapolation
- OBS full waveform inversion

Towards "full-wavelength imaging" of oceanic crust

- Conventional marine seismic data analysis
 - OBS traveltime tomography
 - □ MCS reflection imaging
- MCS tomography and full waveform inversion after Downward extrapolation
- OBS full waveform inversion
- New seismic data acquisitions shall consider:
 - Ultralong streamer (e.g. > 15 km)
 - Dense ocean bottom seismometer/node array
 - Plus waveform-based data analyzing

techniques

Acknowledgement

- □ I am grateful for the crews, technicians and science parties of the cruises that acquired the seismic data used in this talk.
- I am also very thankful for the funding support from European Research Council (ERC), Ocean Frontier Institute (OFI) of Canada, and National Science Foundation (NSF)!

European Research Council Established by the European Commission

National Science Foundation

CASE III – Nova Scotian rifted margin: Joint interpretation

The velocity gradient information in the FWI results assist in the interpretation of the improved reflection image.

Jian, Nedimovic, Canales and Lau, 2021, JGR