

An update on: Developing CTD Best Practices

RVTEC 2023 October

Group Members & Working Group Leads

Laura Stolp Rolling Deck to Repository Woods Hole Oceanographic Institute

Rebecca Hudak Rolling Deck to Repository Woods Hole Oceanographic Institute Margaret Archibald: MMA Ryan Anderson: WHOI John Ballard: UCSD Susan Becker⁻ UCSD Kristin Beem[•] RCRV Lynne Butler: URI Taylor Crockford: WHOI Calla Lloyd-lim: NOAA William Dullea: WHOI Katherine Egan: NOAA Dan Fitzgerald: Hawaii Gordon Furey: POMaritime Alexa Gonzales: NOAA Morgan Hudgins: UGA Mike Kovatch: UCSD

Gabe Matthias: Independant Aaron Mau: UCSD Leah McRaven: WHOI Jessica McLaughlin: UCSD Sara Rivero-Calle: UGA Fernando Santiago-Mandujano: UH Emily Shimada: OSU Peter Shanks: Australian Antarctic Division Shawn Smith: FSU Aiden Thayer: WHOI Micheal Tepper-Rasmussen: WHOI Katie Watkins-Brandt: NOAA

General Best Practice for CTD

- CTD Cast naming convention
 - should be unique, preferably with *CRUISE ID* included where possible
 - RR2301_001
 - *AE2319_CTD_001*
- CTD data structure
 - raw for (hex, xmlcon, btl, hdr)
 - proc for processed data ie (cnv, asc)
 - doc for current sensor calibration files for all sensors that are on the ship
- Log file of events (R2R Eventlog)
 - deploy; max depth; recover; abort
 - sensor cleaning esp when using bleach or Triton/Tergitol used for cleaning
 - Oxygen sensor (####) swapped out for (####)

Recommended Minimum Instrumentation on CTD

Primary Sensors

- dual temperature (SBE 3)
- dual conductivity (SBE 4)
- oxygen (SBE 43) with backup on board

Auxiliary

- C-Star Transmissometer
- Fluorometer
- Valeport Altimeter

Other?

Basic Recommended Cleaning

There are several options described by Seabird application notes, and are summarized below.

1) Flush the T/C sensors using the Seabird provided syringe. Agitate warm (wrist warm) distilled water through the cell in a washing action, forcefully pull the plunger in and out to flush the sensors (this can be accomplished with Tygon tubing and a syringe kit – see Application Note 34) for 2 minutes.

2) Cleaning chemicals

- a. Bleach For bio-fouling it is extremely effective in controlling growth.
- b. Tergitol For removal of surface and air-born oils ingested into the plumbing.
- c. White Vinegar For minor mineral deposits (5 8% acetic acid).

Cleaning Compatibility Chart

Sensors	Bleach	Tergitol/ Triton X	Vinegar	Lens Paper	High grade isopropyl Alcohol	DI H2O agitated cleaning	CLEAN Compressed air	Rinse w hose	Soapy water	HCL
Тетр	Y	Y	Y			Y		Y	Y	
Cond	Y	Y	Y			Y	Y	Y	Y	Not
Oxygen		N				Y		Y	N	
O2 Optode		N				Y		Y	N	
Fluorometer		Y		Y		Y		Y	Y	
SUNA				Y	Y	Y		Y		
PAR		Y				Y		Y	Y	
SBE Pumps		Y				Y		Y	Y	N

Mechanical Termination

What does your vessel use:

- Mechanical poured
- Guy grip
- Feige fitting

Pull Test

- Guy grip 3,000 lb change out every 100 casts?
- Poured termination pull to and for how long?
- Feige fitting (needs a pull test for setting the termination) don't quite test to same strength

Electrical Termination

How does your ship to the Electrical Connection?

- Tie all conductors together
- Each conductor independent
- Scotch casts
- Mecca vs wet pluggable

How often do you?

- Megger cable
- ohm out cable

Science Provided Sensors

Science provided sensors - RCRV - designed a frame to accommodate instruments and LADCP

- a. ph sensors
- b. SUNA2 Nitrate Sensor
- c. ECO FLNTU
- d. Turbidity sensor
- e. using the USBL to know where there package is in the water column
- f. upward/downward LADCP
 - i. signature 100 downward
 - ii. RDI LADCP
- g. eDNA auto sampler

r2r_ctd_plot

prDM vs. (sal11 - sal00)

Questions?

Thank you!

