What is the U.S. <u>Marine Rock and Sediment</u> <u>Sampling (MARSSAM) Facility?</u>

- Prior to 1997 National Science Foundation (NSF) *investigators responsible on an individual basis* for requesting all funding necessary for sediment coring
- However, all sediment cores collected with NSF funding become available to the broad scientific community after brief moratorium
- At 1997 Future of Marine Geoscience (FUMAGEGS) meeting, it was decided that *a central facility should exist* to support coring for all NSF-supported PIs
- Now a 25-year-old national facility based at Oregon State University supporting operations on NSF Academic Research Fleet
- As of 2022 offers equal support of ARF dredging

The MARSSAM Mandate: Sea Change 2015-2025

CONTRIBUTORS:

Committee on Guidance for NSF on National Ocean Science Research Priorities

Decadal Survey of Ocean Sciences

Ocean Studies Board

Division on Earth and Life Studies

National Research Council

Sea Change "Priority Science Questions" (8)

- 1. What are the rates, mechanisms, impacts, and geographic variability of sea level change?
- 2. How are the coastal and estuarine ocean and their ecosystems influenced by the global hydrologic cycle, land use, and upwelling from the deep ocean?
- 3. How have ocean biogeochemical and physical processes contributed to today's climate and its variability, and how will this system change over the next century?
- 4. What is the role of biodiversity in the resilience of marine ecosystems and how will it be affected by natural and anthropogenic changes?

Sea Change "Priority Science Questions" (8)

- 5. How different will marine food webs be at midcentury? In the next 100 years?
- 6. What are the processes that control the formation and evolution of ocean basins?
- 7. How can risk be better characterized and the ability to forecast geohazards like mega-earthquakes, tsunamis, undersea landslides, and volcanic eruptions be improved?
- 8. What is the geophysical, chemical, and biological character of the subseafloor environment and how does it affect global elemental cycles and understanding of the origin and evolution of life?

Implications for science:

Earthquakes Productivity/Climate Glacial dynamics b) Sometimes it's worse than it looks ...

What ships are used the most (2005-2022)?

MARSSAM Heavy Coring 2005-2022

Piston action and placement determines core quality!

Sensors measure: 3-d acceleration Depth Temperature

Release Sensor

Corehead Sensor

Scope = FreeFall + Recoil

For 9/16 3x19 Trawl wire we increase scope by 6" for every 500m over 2000m to account for increasing recoil with depth

How much recoil is there with synthetic? A lot more!

3 m at 500m depth

5 – 8 m at 1900m depth

7-9 m at 2600m depth

Core	Depth	rebound distance		% elongati	on
PR02-PC02	492		3.04		0.62%
PR05-PC01	1900		7.89		0.42%
PR05-PC03	1900		6.73		0.35%
PR05-PC04	1900		5.92		0.31%
PR04-PC01	2600		7.64		0.29%
PR04-PC02	2600		8.93		0.34%

Elongation and therefore recoil is a function of the load/line strength

Core	Depth	recoil	% elongation
PR02-PC02	492	3.04	4 0.62%
PR05-PC01	1900	7.89	0.42%
PR05-PC03	1900	6.73	3 0.35%
PR05-PC04	1900	5.92	2 0.31%
PR04-PC01	2600	7.64	4 0.29%
PR04-PC02	2600	8.93	3 0.34%
		Average	0.40%

The recoil distances we measured closely track values for expected elongation

Plasma[®] HiCo 12x12 Elongation (%)

~6500/42000 = ~15%, ~.45% Elongation

Depth vs. Rebound Distance

Depth vs. Rebound Distance - Extrapolated

Depth (m)

Depth vs. Rebound Distance - Extrapolated

Depth (m)

- We were able to collect in-situ measurements of the recoil of synthetic line in piston-coring scenario
- Recoil of synthetic line is far greater than for the same diameter of steel wire
- More recoil = more potential for core deformation effects and greater rigging challenges

Time for an example?

