What is the U.S. Marine Rock and Sediment
Sampling (MARSSAM) Facility?

* Prior to 1997 National Science Foundation (NSF) investigators responsible on an
individual basis for requesting all funding necessary for sediment coring

* However, all sediment cores collected with NSF funding become available to the
broad scientific community after brief moratorium

e At 1997 Future of Marine Geoscience (FUMAGEGS) meeting, it was decided that
a central facility should exist to support coring for all NSF-supported Pls

* Now a 25-year-old national facility based at Oregon State University supporting
operations on NSF Academic Research Fleet

* As of 2022 offers equal support of ARF dredging
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Sea Change “Priority Science Questions” (8)

1.

What are the rates, mechanisms, impacts, and geographic variability of
sea level change?

How are the coastal and estuarine ocean and their ecosystems
influenced by the global hydrologic cycle, land use, and upwelling from
the deep ocean?

How have ocean biogeochemical and physical processes contributed to
today’s climate and its variability, and how will this system change over
the next century?

What is the role of biodiversity in the resilience of marine ecosystems
and how will it be affected by natural and anthropogenic changes?



Sea Change “Priority Science Questions” (8)

5.

How different will marine food webs be at midcentury? In the next 100
years?

What are the processes that control the formation and evolution of
ocean basins?

How can risk be better characterized and the ability to forecast
geohazards like mega-earthquakes, tsunamis, undersea landslides, and
volcanic eruptions be improved?

What is the geophysical, chemical, and biological character of the
subseafloor environment and how does it affect global elemental cycles
and understanding of the origin and evolution of life?



Implications for science:

Earthquakes Productivity/Climate Glacial dynamics
)

Sometimes it’s worse than it looks...
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What ships are used the most (2005-2022)?

MARSSAM Heavy Coring 2005-2022
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Definition of Terms

Recoil

Release

Core Head

Piston

Freefall

Scope

Pendant

Length




Piston action and placement
determines core quality!

Piston too high
and you’re Piston too low and you’re missing

sampling water a lot of mud

Piston motion creates
deformation!
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Sensors measure:
3-d acceleration
Depth
Temperature

Release Sensor

Corehead
Sensor
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PR04-PC01 Winch Tension
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Scope = FreeFall + Recoil

For 9/16 3x19 Trawl wire we
increase scope by 6” for every
500m over 2000m to account
for increasing recoil with
depth

How much recoil is there
with synthetic? A lot
more!
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Elongation and therefore recoil is a function of the load/line strength

Core Depth
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The recoil distances we measured closely track values for

expected elongation

492

1900

1900

1900

2600

2600

recoil

Average

3.04

7.89

6.73

5.92

7.64

8.93

% elongation

0.62%

0.42%

0.35%

0.31%

0.29%

0.34%

0.40%

load - % of MBL

40
35
30
25
20
15
10

Plasma®“ HiCo 12x12 Elongation (%)

O
i

1

.25 5 75 1

% elongation

~6500/42000 = ~15%, ~.45%
Elongation

1.25



Rebound Distance (m)
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Depth vs. Rebound Distance

— linear regression
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0 200

| | | |
1000 1500 2000 2500

Depth (m)

3000




Rebound Distance (m)
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Rebound Distance (m)
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We were able to collect in-situ measurements of the recoil of synthetic line in piston-coring
scenario

Recoil of synthetic line is far greater than for the same diameter of steel wire
More recoil = more potential for core deformation effects and greater rigging challenges

Time for an example?



No Recoil
Compensation

Depth: 1900m
Freefall: 3m
Scope: 3.8 m
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No Recoil
Compensation

Depth: 1900m
Freefall: 3m
Scope: 3.8 m
Recovery: 1.5 m
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Adding scope and
reducing freefall

Depth: 1900m
Freefall: 1m
Scope: 6.4 m
Recovery: 10.0 m
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Adding scope and
reducing freefall

Depth: 1900m
Freefall: 1m
Scope: 6.4 m
Recovery: 10.0 m
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