WHO AM I?

MARINE TECHNICIAN SUPERINTENDENT - OSU MTG

iRobot, Texas A&M, BIOS

RVTEC **SCOAR** rep – *future* RVTEC Chair
What we’ve done

- **Procured** UAS’s to support science objectives on the R/V Oceanus
- **Hosted** a UAS training event at the OSU MTG facility
- **Obtained** Part 107 certifications via the FAA for all OSU MarTech’s
- **Utilized** UAS’s to support public outreach
- **Developed** OSU MTG specific US documentation (JSA/SOP)
Training

Part 107 training with General Pacific. A 2-day “cram” course with a guaranteed Part 107 test pass.

Continued pilot training and system familiarization within team
Task to Be Accomplished: Deployment and Recovery of Drone in Flight

Potential Hazards:
- Projectile from broken propeller
- Entanglement of drone in ship's equipment
- Loss of sight of drone
- Wave and swell action enhance potential for hazards
- Wind effects within proximity of the ship
- Personal injury when performing hand launch / landing
- Battery failure
- Experiencing external distractions or interruptions may enhance potential hazards
- Lack of adequate communication may enhance potential hazards
- Line or cable in water being caught in the propulsion system
- Deploying or recovering before everyone is notified and ready, particularly the bridge officer
- Personnel falling overboard while working near deck edge

Environmental Concerns:
- Loss of Drone at sea
- Loss of Li Batteries

Environmental Controls:
- Maintaining adequate battery levels for flight and return
- Maintaining visual on drone when in flight
- Ensure positive control of all components as they are brought on board.

Personal Protective Equipment: (Note: Some items may or may not be required depending on the situation, company policy, etc.)
- Eye Protection
- Hard Hat
- PFD
- Safety shoes
- Work clothing appropriate for outside deck work
SOP (standard operating procedure) & vehicle specific user manual

Includes:
- Flight planning
- How to submit a NOTOM (notice to airmen, which is required if operating in controlled airspace)
- Piloting instructions specific to each vehicle
- How to operate the vehicle's controls
- Tips and techniques for piloting
- Account usernames and passwords
- Video editing instructions
- Where to find help if needed
Drone resources at OSU

- Drone Group (on campus)
- COA *(OSU moved away from this and is pushing for all OSU UAS pilots to just get their own part 107’s)*
- Drone Compiler app *(A great resource to logging flight data, and used to be required when OSU provided the COA)*
- UAS training at University for students and employees
- OSU has its own UAS policies depending on how they’re being used
- OSU will register our drones with the FAA for us *(and make sure we stay current)*
Satellite Domes - Grey whale Thermal
Photo Finish Friday (not a thing; we just made it up): great aerial view of Ship Ops, NOAA MOC-P, Yaquina Bay Bridge, and beyond, taken with the OSU Marine Technician Group's aerial drone.
OSU MTG drone science uses on Oceanus

UAS utilized to video whales
Tracy Crew’s 2019
OSU MarTech served as pilot in command b/c scientist’s Part 107 expired

View an R&D vehicle being towed off the starboard side as well as to look at waves over the horizon
Jim Moum – two cruises 2018 & 2019
Footage utilized in ONR conferences

Credit: Leigh Torres
Seaglider Deployment/Recoveries
Sarah Webster 2021
Footage significantly utilized in UW APL documentary
Oceanus's NSF/JMS inspection
OSU Ship Operations facility
First drone flight - R/V Oceanus
Vehicle = *Splash Pro* w/Herō GoPro
Last drone flight - R/V OCEANS
Vehicle = Mavic 2 Enterprise Dual
OSU MTG public outreach with drones

Marine Technician Kristin Beem presenting at a public outreach event hosted by the Oregon State CEOAS Marine Technician Group in their Corvallis workshop. Photo by Andrew Woogen

Send Announcements (and photos!)
OSU MTG Pilot Training – how to land a UAS on a moving ship (catch it?)
Future of UAS’s with the OSU MTG

• Anticipate more use cases identified by the science community
• Continued training on UAS piloting and operating off a moving ship
• Explore new payloads (sensors?)
• Invest in spare equipment and innovation
• Renew part 107 certs every 24 months for all OSU MarTech’s
• Establish clear expectations of UAS services MarTechs will provide to the ship-using science community
R/V Armstrong
RVTEC Community

• Guidance on ‘hobbyist’ drone use on ARF vessels
• Requested recommendations of vehicle type (R/V Langseth seismic)
• Create list of new technology possibilities & technical support needed
• Seeing an increase use in fleet and anticipate more
• Overall lots of interest by the RVTEC community, but also hesitation
Future of UAS’s in RVTEC – potential

• Consider a center for excellence – one MarTech Group could spearhead this innovation to provide a service to the science community as needed. Potentially funding as a specialize service.

• Consider group training for UNOLS MarTechs, to economically and efficiently train MarTechs in UAS’s and get them part 107 certified

• Consider establishing a fleet-wide COA for UAS operations in the MarTech community. Which could include a set of requirements (ex. Training/vehicle registration/flight data recoding/mission ops pre-approval…)

• Establish clear expectations of UAS services MarTechs will provide to the ship-using science community
OSU MTG’s UAS Mavic2 Enterprise Dual

4K video gimbal
FLIR thermal camera
Daylight readable display/controller
Strobe light for dusk/dawn flights
Speaker
Spot light
Floats
Protective case and spare batteries/parts