General Oceanics Underway pCO₂

John Ballard

Oceanographic Data Facility, UCSD

October 22, 2019

UC San Diego

Outline

- Oceanographic Data Facility
- Underway pCO₂ systems
- General Oceanics (GO)
 - Design and options
- UCSD Ship Installations
 - R/V Sally Ride and Revelle
- Data Quality
 - Aux data needs
 - SOCAT

Oceanographic Data Facility

- Specialized services in oceanography since 1972
- Current Team:
 - Chemists (Susan Becker, Melissa Miller, John Ballard)
 - Data analysts (Joseph Gum and Michael Kovatch)
 - Science Advisor (Todd Martz and Jim Swift)
- Nutrients, oxygen, salinity, chlorophyll analysis
- Rosette and CTD sensor setup, calibration, and QC
- GO-SHIP, SOCCOM, UCSD vessel operations, shore analysis, equipment loan, SIO teaching assistance, and PI contracted cruises
- Analytical methods, instrument, and software development

Underway pCO₂ systems

- Measurement of carbon dioxide in surface seawater and atmosphere (Infrared analyzer, GC, or cavity ring down)
 - Ocean and atmosphere gas exchange
 - Significant parameter for global carbon budgets and modeling
- Normally frequent calibration with CO₂ standards
- Many custom built systems over past 30-40 years
- Effort to standardize data quality (ie: SOCAT)
 - Accuracy within 0.2 µatm (air) and 2 µatm (seawater)
- Supporting measurement accuracy crucial
 - Barometric pressure, equilibrator temperature, intake temperature

General Oceanics

- Originally developed by Craig Neill (UW, Bergen, CSIRO)
 - Craig Neill still advises GO engineering decisions
- One of the first commercially available underway pCO₂ systems (2003?)
- Fully automated measurements with option of stand alone operation
 - Particularly useful on ships of opportunity
- NOAA/AOML installation guides and support

- 1/8" stainless steel gas tubing
- ½" Dekabon (Synflex) tubing
- Data cable
- Power cable (AC or DC)
 Pressurized air
 - 1 Water inlet
 - 2 Manual valve
 - 3 Safety valve
 - 4 Temperature sensor for intake temperature
 - 5 Anti fouling device
 - 6 Pump
 - 7 Thermosalinograph and/or manifold
- 8 pCO2 system wet box
- 9 pCO2 system dry box
- 10 Main switch for pump
- 11 Drain tank
- 12 Outlet
- 13 Inlet for outside air
- 14 Deck box
- 15 GPS antenna
- 16 Iridium antenna
- 17 Pressure inlet

Figure 1. Schematic overview of the full installation of an autonomous underway *p*CO₂ system.

General Oceanics

- Three main components:
 - Wet Box Seawater gas exchange
 - Dry Box CO₂ analyzer, control laptop
 - Deck Box GPS, barometric pressure, Iridium antenna
- Optional external sensor interface
 - pH, oxygen, temperature, salinity, turbidity, fluorometer
- Labview based control software
 - Serial inputs handled through ethernet switch to laptop
 - GPS based Sleep/Wake conditions
 - Moisture sensors and shut off valve
 - Additional shut off valve control

https://www.generaloceanics.com/pc02-monitoring/

Documentation and Support

- Dennis Pierrot, AOML
- Rik Wanninkhov, AOML
- Kevin Sullivan, RSMAS
- Peter Quesada, General Oceanics
- Craig Neill, CSIRO

NOAA Technical Report, OAR-AOML-50 https://doi.org/10.25923/ffz6-0x48

Instruction Manual

Model 8050

Automated Flowing pCO₂ Measuring System

Installation of Autonomous Underway *p*CO₂ Instruments onboard Ships of Opportunity

Recommendations for Autonomous Underway *pCO*₂ Measuring Systems and Data Reduction Routines

Denis Pierrot^{a,*}, Craig Neill^b, Kevin Sullivan^a, Robert Castle^c, Rik Wanninkhof^c, Heike Lüger ^a, Truls Johannessen^b, Are Olsen^{b,d,e}, Richard A. Feely^f, Catherine E. Cosca^f

• Target:

- Final test December 2019
- Operational early 2020

- Completed and tested February 2019
 - SS 316 plumbing of SW and FW
 - Drain tank system
 - New TSG mount and plumbing
 - Emergency e-actuated shut off valve
 - Gas standards and instrument calibrations

- Integration with our network
 - GO ethernet switch routed into network drop (transceiver room)
 - Virtual machine instead of laptop
 - Local remote access for maintenance and QC
 - UDP protocol for inputs
 - GPS, barometric pressure, intake temperature, and TSG
 - Labview updates?
 - GO will accommodate custom communication settings
- FW backflush of plumbing between wet box and underway SW pump
 - Manual ball valves
 - Each port stop?
 - Bleach annually? Test biofouling in plumbing with CO₂ measurements
- Intake temperature dry dock 2021
 - Requires pipefitter and custom probe mount

- Heavy vibrations in bow thruster room (bow slap)
 - Dampers on frame and box mounts
 - Are dampers enough?
 - Shortened instrument life or leaks?
- Limit intake temp change
 - Heat exchange SSW pump and bow thruster
 - Insulate plumbing
 - High flow rates with bypass valve
- TSG and GO flow rates displayed in MET
- GO equilibrator temp displayed side by side with TSG
- Discrete sampling valve near wet box

UCSD Installations R/V Revelle

- Target:
 - Install and test early 2020
 - Operational mid 2020
- Network integration will follow Sally Ride template
- Intake temperature
 - SBE 38
 - Inline installation does not require dry dock
- QC procedure
 - Precedent set by Sally Ride
 - Likely involve a group of interested PIs (ie: Todd Martz)
 - New funding?

Mandatory Hardware

- Intake Temperature
 - closest to opening to sea surface as possible
 - Accuracy 0.05° C required
 - Ideally, ΔT (intake to equilibrator) < 1° C
 - Ex: If $\Delta T = 1^{\circ} C$, then 16.8 µatm correction with uncertainty of 0.8 µatm pCO₂
 - General instrument uncertainty ~1 μatm , so total in this scenario ~2 μatm
 - Remember, overall accuracy needed to 2 μatm pCO₂
- Barometric Pressure accuracy 2 mbar
- At least 3 non-zero WMO traceable standards

Surface Ocean CO₂ Atlas (SOCAT)

- International repository for pCO₂ data (>100 contributors)
- 'Cookbook' for data QC flag and SOP criteria
 - QC flags A + B (uncertainty 2 μatm), C + D (5 μatm), E (10 μatm)
 - 7 SOP criteria for flags A + B
- PMEL live access server fo QC software
 - http://access.pmel.noaa.gov/SOCAT

SOCAT Quality Control Cookbook -For SOCAT version 7-

Siv Lauvset, Kim Currie, Nicolas Metzl, Shin-ichiro Nakaoka, Dorothee Bakker, Kevin Sullivan, Adrienne Sutton, Kevin O'Brien, Are Olsen QC flag A + B Seven SOP criteria:

- 1. The data are based on *x*CO₂ analysis, not *f*CO₂ calculated from other carbon parameters, such as pH, alkalinity or dissolved inorganic carbon;
- 2. Continuous CO₂ measurements have been made, not discrete CO₂ measurements;
- 3. The detection is based on an equilibrator system and is measured by infrared analysis, or gas chromatography or cavity ring-down spectroscopy;
- The calibration has included at least two non-zero gas standards, traceable to World Meteorological Organisation (WMO) standards, which bracket the observed range in xCO₂;
- 5. The equilibrator temperature has been measured to within 0.05 °C accuracy;
- 6. The intake seawater temperature has been measured to within 0.05 °C accuracy;
- 7. The absolute equilibrator pressure has been measured to within 2 hPa accuracy. Note that many equilibrator-based instruments only have a differential sensor in the equilibrator itself, and an external pressure sensor (often the LiCor pressure sensor) is used to estimate the absolute pressure (i.e., abs_equ_pressure = diff_equ_pressure + abs_lab_pressure). If this is the case then the absolute equilibrator pressure is a sum of two sensors so the accuracy of both (alternatively the combined accuracy of both) must be documented.

In addition, warming between in situ and measurement should be <1 °C as explained above.

QC flag C + D

For an accuracy estimate of better than 5 µatm (C or D) the criteria differ depending on type of instrumentation:

- Shipboard NDIR, gas chromatographs and CRDS systems must have:
 - Two calibration gases, one of which can be a zero gas. The non-zero gas should span nearly the entire range observed in fCO₂ (i.e. the observations cannot be >20% outside the certified standard gas value).
 - Both temperatures must be measured to within 0.2 °C accuracy, and absolute equilibrator pressure has been measured to within 5 hPa accuracy.
 - The warming between in situ and measurement should be <3°C.
 - In addition, all other SOP as given above are fulfilled and properly documented in the metadata.
- Alternative sensors need to have:
 - Daily or more frequent *in situ* (i.e. when the instrument is operating in its natural environment) calibration with at least two calibration gases, one of which can be a zero gas. The non-zero gas must span the range observed in *f*CO₂.
 - A clear and detailed description of the calibration (including the frequency of it) needs to be provided in the metadata.

Questions?

Figure 1 (from Wanninkhof et al., 2013) below shows isopleths of uncertainty in calculated fCO_2 (ΔfCO_2) arising from uncertainty in the temperature (T_{equil}) and pressure (P_{equil}) of equilibration, respectively. For equilibrator-based systems, the uncertainty in the *in situ* and measurement temperatures and the measurement pressure needs to be evaluated in order to assess the overall accuracy of fCO_2 .

