KVM Over LAN for Oceanographic Data Acquisition Systems

Daniel Yang, Information Systems Analyst, Shipboard Technical Support

KVM Brief History

Keyboard, Video, Mouse

- A KVM is a hardware device that allows the control of multiple computers from a one or more keyboard, monitor, and mouse.
 - A need for centralized data visualization increased in the past two decades as DAS is hosted digitally (sub-bottom profilers, visualized serial data)
- Past solutions
 - Daisy chaining various splitters, extenders, 2-4 port KVMs (eg. IOGear, Tripplite products)
 - Rackmount KVM with display
 - Rackmount KVM switch (Aten, NTI, etc...)

KVM over LAN for Oceanographic DAS

Reasons For Switching

- Wiring and Scalability
 - Previous solutions are less modular, which leads to quick-fixes that add up from cruise to cruise
 - Regardless of turnover notes, it always turns into a mess.
 - Inconsistent installations
 - Not limited to the number of ports of a single KVM unit
 - Not a single point of failure, as most KVM's are not really built to enterprise standards (redundant power supplies, failover, enterprise-grade components)
- Leverages UPS-backed PoE
 - No wall warts, no extra power cables utilizing dirty power

KVM over LAN for Oceanographic DAS

Black Box's Mediacento IPX series

- The only solution that transmits HDMI (A/V) and USB over LAN with true plugand-play
 - Matrox Maevex series provides similar capability, but no USB; and costs more
 - Up to 16 sources is plug-and-play
 - No software configuration required, on-device ID switch
 - More than 16, requires advanced configuration
 - PoE
 - EDID and HDCP support
- 1080p HD and 4K models
- Discrete hardware for scalability and affordable spares

UC San Diego

KVM over LAN Prerequisites

Robust Network Infrastructure

- IGMP-snooping compatible switches required
 - Most efficient use of the network
 - Without it, risk of network saturation
- 10GB backbone
 - R/V Sally Ride "IMCOS" switches all had to be replaced for this to work ship-wide
- LACP preferred
 - Link Aggregation Control Protocol can double your backbone pipe
 - LACP is best viewed as a reserve and/or backup in case of failover – High availability, redundancy, reliability
 - Side point: Data, internet, VoIP, and now KVM all dependent on LAN
- Enterprise-grade

UC San Diego

 LACP over two switches, redundant power supplies, high quality internal components

KVM over LAN Prerequisites

LAN Metrics

San Diego

- Each display utilizes 60Mb/s (7.5MB/s)
 - 100Mb switches will get saturated with only two units
 - 1Gb, Approximately 10 units limit, perhaps more with LACP
 - 4k upwards of 4x throughput?

• For one 1Gb switch, LACP is a must

- Using LACP, roughly 43%+ utilization with 2 1Gb NICs and 15 Mediacento RX units
- Without LACP, easily see it's 86%+ utilization
 - No headroom for network spikes

Info	Statistics		36 interfaces	
Status	Index	Name		Total Utilization %
	25	Gi1/0/2	3	62.42
	26	Gi1/0/2	4	22.03
	36	Po23		42.22
ĕ	36	Po23		42.22

KVM over LAN Pros & Cons

Cons

- Expensive at scale
 - \$700/pair, 15 1-to-1 displays already hits \$10k
 - Increasing scale may require expensive network infrastructure
- Cybersecurity is nonexistent
 - Telnet to control the devices, and no password required; anyone can go in and change settings
 - Puts importance again on a robust network infrastructure for a secure LAN
- Troubleshooting can be complicated
 - Multiple pieces of hardware
 - CLI

UC San Diego

KVM over LAN Pros & Cons

Pros

- Easy to Install
- Modular
- Scalable

KVM over LAN Pros & Cons

Pros (Continued)

- Excellent latency and video quality
 - Almost no perceived input lag, or video stuttering
 - Nearly no noise or artifacting introduced from EM noise
- EDID passthrough
 - Sends proper monitor resolution data from the monitor to the source; so proper drivers and resolutions can be used
- Local serial console
 - Produces excellent logs to troubleshoot nearly any issue
- PoE
 - Power redundancy offloaded to resilient enterprise-grade PoE switches that are on multiple UPS'
- Impact from failure is minimal
 - Compared to past solutions, discreet components can be swapped out and configured quickly
 - This is not Enterprise-grade hardware, so discreet hardware with, on-hand spares is the way to go
- Networked
 - Can monitor and measure using network monitoring tools
 - Being on the network means you can collect metrics and identify trends
- Not a VNC
 - Separate instance from the actual OS
 - It will not take away any processing cycles away from that precious DAS computer chugging away at I/O.
- Happy Technician

UC San Diego

Questions? Thanks!

