UAS Activities at Lamont-Doherty Earth Observatory of
Columbia University
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R/V Falkor — October/November 2016
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R/V Falkor — October/November 2016

Flight001 RAD UAV Payload @ Station09 (S9)

All UAV flights took place
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Combines vertical takeoff and landing (VTOL) =~
capabilities of a quadrotor and the speed and
range of a fixed-wing (FW) aircraft
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103 Ibs gross weight
12-18 hours endurance

8-12 Ibs payload

Max demonstrated launch weight 105 Ibs N, 1
31 kts
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UAS from Ships

No runway needed

Portable

Shipboard operation demonstrated

Pusher engine — required for gas and aerosol measurement

Nose cone payload sTiTuTE




Shipboard Operation — Confined Area Launch and Recovery

« Standard configuration provides 3 minutes
VTOL, at 75ft transition height.

. 30-45 seconds required for each launch and
recovery event

e 2 min reserve

« Lateral Iaunch/recovery area clearance

« Obstacle clearance height can increase wﬁh =
increased VTOL battery mass. 150 ft.
transition altitude costs ~2.5 hours fixed wing
endurance

INSTIT L[ E




UAS from Ships — Operational Limits

Range: Operations were limited to daytime and line
of sight (5 nm).

Altitude: Operations range up to 5000 ft. (self-
determined) _

Clouds and Visibility: Operations were limited to
visual line of sight and class E airspace weather
minimums (3 statute miles flight visibility and 500 ft
below any clouds).




UAS from Ships — Hover Test




UAS from Ships — Launch




UAS from Ships — Return Transition and Landing




UAS from Ships — Flight Summary

* Tucson Integration:
e 2 Total Flights (3 hours)
e 1 Functional Check Flight (FCF)
1 with Radiation Payload

« RAD, ATOM, VNIR payloads
* Nominally < 3 hours

3 Hover Tests

3 FCFs




UAS from Ships — Accomplishments

5 successful hover flights

10 successful flights with vertical take off, switch to
fixed wing flight, and vertical landing.
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_+ Demonstrated the ability to 3 >

Demonstrated the ability to operate the HQ
technology from a ship under 10 — 18 kt wind speed

conditions.




UAS from Ships — Lessons Learned

Pitch and roll of the deck posed a less significant
challenge than anticipated.

High Wind (>25 knots) posed a problem... the large steel

structure of the ship was significant enough to cause a

significant transitional turbulent boundary layer over
a,g_i;g;i}fﬁ,__ ~operatio

T
R

'Solutlon Mor?powerful \LTOL

"~ for automated take off:and Iam’* :

;:).‘

Latitude Engineering has increased the VTOL system .
control authority (power, responsiveness) for future
operations... currently on HQ-90. More to come.

Autonomous VTOL will require the addition of the dGPS
system... future R/V Falkor Cruise in December 2019.




UAS Payload Development
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UAS Payloads

Table 1: Implemented science payloads and applications

Sensing technologies

VIS-TIR* High-resolution broadband visible (400-700 nm) imager, uncooled microbolometer (8-14 pum) imager
sensitive to 0.05°C for skin sea surface temperature (SST) mapping, whitecapping, and other upper ocean
processes.

Hi-TIR* Cooled infrared (7.7 — 9.5 um) imager sensitive to 0.02°C for skin SST mapping, whitecapping, and other
upper ocean processes.

HYP-VNIR* Hyperspectral visible (300-1000 nm) imaging spectrometer with better than 3 nm spectral resolution for
spectral radiance measurements of the upper-ocean to determine ocean color and biogeochemical
mapping. Upward-looking narrow FOV spectrometer provides measurements for estimates of spectral
albedo of varying surfaces including ocean.

HYP-NIR* Hyperspectral near-infrared (900-1700 nm) imaging spectrometer with better than 3 nm spectral resolution
for spectral radiance measurements of the near-surface ocean to determine ocean color and

biogeochemical mapping.

LiDAR for wave height and surface roughness; fast response 3D wind speed and direction (100 Hz), fast
response temperature (50 Hz), fast response relative humidity (100 Hz) for estimating momentum, latent
heat and sensible heat turbulent fluxes.

Upward- and downward-looking pryanometer (broadband solar 285-3000 nm) and pyrgeometer
(broadband longwave; 4.5-40 um) to measure full hemispheric irradiance to understand the surface energy :\\ -
budget and map albedo of varying surfaces including the ocean. High-resolution broadband visible e SN
(400-700 nm) imaging is used to map whitecapping and other upper ocean processes.

Drone-Deployed Micro-Drifters with launcher for in-flight ejection of up to four micro-dropsonde packages.
The DDuD measures temperature, pressure, and relative humidity as it descends through the atmosphere.
Once it lands on the ocean’s surface, it deploys a string of sensors that measures temperature and salinity
of the upper 2-3 meters of the ocean at fifteen minute intervals for up to two weeks as a buoy. The ocean

sensors on the DDuD collect and store data and then transmit the data back to the UAS on subsequent . & <@
flights from up to 10 miles away. GORDON AND BETTY]

*also included upward- and downward-looking pyrometers (8-14 um) to measure narrow field-of-view (FOV) skin SST and M RE
ice-surface temperature.

Sea Ice Radar Development — Built on experience from lcePOD at LDEO PO UND LO NS
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Shortwave Downwelling Irradiance During Level Flight
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Comparing downwelling irradiance
from LDEO UAV-based to LDEO
ship-based measurements shows
the two data sets broadly track

Note a decrease in both up-and
downswellifig longwave irradiance
at higher altitude

Differences in UAV-based vs ship-
based longwave downwelling
measurements highlight ship-
based errors introduced by
superstructure
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Hyperspectral Payload Development
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Current Directions — R/V Falkor

Climatology of 10m Wind Speed Over Ice-Free Oceans
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Cruise from R/V Falkor in the Northwest Australian Contiheﬁtél Sﬁ_eIf
Payloads developed for Manta UAS will be'integrated onto Latitude Englneerlng ‘HQ-60.-
Airborne surveys of the Sea Surface Microlayer. from Latitude UAVs as well"as in"situ" measurements of tﬁe SSM chemlstry ;_

catamaran, drifters, and buoys.

Measurements: ocean surface gravity-capillary wave spectra (O(1 OOO1)m) using LIDAR and polarimetric imaging; complet;?:hemtc‘. and
biological quantification and characterization of the biogenic slicks from autonomous catamarans; and quantification and characterization: of he
near-surface ocean temperature, salinity, TKE dissipation rate, and currents from a drifting spar buoy and in the mixed-layer from@!utonomous
sub-surface profiling SN



Current Directions — R/V Falkor

(Top) True color image captured by the Landsat satellite on November 17, 2014, of the coast of Northwestern Australia, east of Point Samson. (Bottom
Left) 30 m resolution chlorophyll map obtained from the Landsat data. The high albedo from the dense surface slicks trigger the cloud mask (white).
(Bottom Right) MODIS Aqua map of chlorophyll for the same day.




Current Directions — R/V Falkor

Trichodesmium |




Current Directions — R/V Falkor

a) Trichodesmium sp. abundance as the number of normalized bacterial 16S rRNA genes (Normalized Reads) in manual samples
taken at 04:15 UTC (15 Oct 2016) from 1m below the surface, the surface skin and surface slick. Note that the skin sample was
collected between the surrounding banded slicks, and cannot be considered as a “clean” skin layer. b) Micrograph of sampled
colonies of Trichodesmium sp. Scale bar represents S0um.




Surfactants (Sta 4&5, Timor Sea)
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Current Directions — R/V Falkor
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Enhancements to HQ-90B for Shlp Deployment
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1. Complete éutonomo‘ﬁ-‘i}ta e : ojectgovides a
considerably safer and more reliable VTOL operatro Alptegratio m ate AEG \ dGPS
system for automated VTOL takeoff and landing. Dual dGPS system detére mes airORaTt.
heading. Additionally, the ground station on the ship uses the ALIGN syste to send the
vehicle data including the ship’s heading and heave. The precise relative position data\
achieved with a dGPS solution allows the vehicle to autonomously land on a moving platform

at sea. e

hd \
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Enhancements to HQ-90B for Ship Deployment

SCHMIDT

[\

OCEAN
INSTITUTE

2. Dual- (Multi-) UAV aircraft ﬂlght operations.
aircraft are rewreg;Lf otk _

GORDON AND BETTY

MOORE

FOUNDATION

plications, multiple
ole temporal spatial
‘long-range mesh

-time mission

Ip to ‘_f\- Long-

\expen an total

Iridium costs (both modem hardware and data sefvice charges) It furthe allows for
a. Mother aircraft at high altitude to provide relay link to a squaaron or fleet of{A

to fly a greater distance (over 100 nm) from ship.

b. Mother aircraft at high altitude to provide relay link to a squadron or fleet of UAVs

flying at low altitude.
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Bridging the Scientific and Indigenous
Communities to Study Se nge in
Arctlc AIaska




Sea Ice is Thinning

1980 198§ 3990 1395 > 20{)@_




Consequences of Sea Ice Change




Project Goals

. Understand sea ice dynamics and how it is changing with
a warming climate

 Bridge scientific & indigenous knowledge to study changes

in sea ice that will lead to predictive models for:
» Seaice loss
« Impact on ocean life
« Impact on land mammals

GORDON AND BETTY
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Indigenous Knowledge

Indigenous knowledge is “a systematic way of thinking applied to phenome ‘q‘acro‘ olo gical,
physical, cultural and spiritual systems. It includes insights based on evidence acquired throtgh-direct
and long-term experiences and extensive and multigenerational observations, lessens and skills:it has

developed over millennia and is still developing in a living process, including knowledge acquir‘ed\ X
today and in the future, and it is passed on from generation to generation” (ICC Alaska 2015). |




Community

Legacy

Project Objectives

Improve understanding of the mechanismes,
impacts, and implications of sea ice retreat in
the Arctic for the global science community and
local stakeholders

Develop partnerships between scientists and local
residents to increase the capacity of local
communities to address their research needs

Document the progress of the project as a
potential model for future community-based
collaborative science endeavors in the Arctic




Community-based research design
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Village of Kotzebue
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HQ-90 AIRFRAME SPECIFICATIONS

PARAMETER ‘ PERFORMANCE ‘ VALIDATION METHOD

Line of Sight Range : ‘ 60 Nautical miles nominal* ‘ Flight Test

Maximum Endurance ‘ 20+ hours . ight Test*™

Mission Speed ‘ 40kts

Payload ‘ 12-20Ibs

Highest HQ wind launch to date: 31 knots
Expected launch/recovery wind limitation: ~30 knots, on the nose.
No crosswind limitation. HQ automatically negotiates crosswind up to max wind limitation

Max rain demonstrated to date: 0.25 inch/hour :
GORDON AND BETTY

Max demonstrated WMO sea state capability: 5 MOORE

Flight into known icing (FIKI): Under Development FOUNDATILON
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UAS Payload Development
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UAS Payloads

Table 1: Implemented science payloads and applications

Sensing technologies

VIS-TIR* High-resolution broadband visible (400-700 nm) imager, uncooled microbolometer (8-14 pum) imager
sensitive to 0.05°C for skin sea surface temperature (SST) mapping, whitecapping, and other upper ocean
processes.

Hi-TIR* Cooled infrared (7.7 — 9.5 um) imager sensitive to 0.02°C for skin SST mapping, whitecapping, and other
upper ocean processes.

HYP-VNIR* Hyperspectral visible (300-1000 nm) imaging spectrometer with better than 3 nm spectral resolution for
spectral radiance measurements of the upper-ocean to determine ocean color and biogeochemical
mapping. Upward-looking narrow FOV spectrometer provides measurements for estimates of spectral
albedo of varying surfaces including ocean.

HYP-NIR* Hyperspectral near-infrared (900-1700 nm) imaging spectrometer with better than 3 nm spectral resolution
for spectral radiance measurements of the near-surface ocean to determine ocean color and

biogeochemical mapping.

LiDAR for wave height and surface roughness; fast response 3D wind speed and direction (100 Hz), fast
response temperature (50 Hz), fast response relative humidity (100 Hz) for estimating momentum, latent
heat and sensible heat turbulent fluxes.

Upward- and downward-looking pryanometer (broadband solar 285-3000 nm) and pyrgeometer
(broadband longwave; 4.5-40 um) to measure full hemispheric irradiance to understand the surface energy :\\ -
budget and map albedo of varying surfaces including the ocean. High-resolution broadband visible e SN
(400-700 nm) imaging is used to map whitecapping and other upper ocean processes.

Drone-Deployed Micro-Drifters with launcher for in-flight ejection of up to four micro-dropsonde packages.
The DDuD measures temperature, pressure, and relative humidity as it descends through the atmosphere.
Once it lands on the ocean’s surface, it deploys a string of sensors that measures temperature and salinity
of the upper 2-3 meters of the ocean at fifteen minute intervals for up to two weeks as a buoy. The ocean

sensors on the DDuD collect and store data and then transmit the data back to the UAS on subsequent . & <@
flights from up to 10 miles away. GORDON AND BETTY]

*also included upward- and downward-looking pyrometers (8-14 um) to measure narrow field-of-view (FOV) skin SST and M RE
ice-surface temperature.

Sea Ice Radar Development — Built on experience from lcePOD at LDEO PO UND LO NS




Kotzebue Temperatures

UAS: Maximum Temperature 100.4F and Minimum Temperature -4F

Temperature

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec :
‘ N
Qi

The daily low (blue) and high (red) temperature during 2013 with the area benveen them shaded gray and : N
oo oo T e e e req Jenyect fom sadel & GORDONANDBETTY
superimposed over the corresponding averages (thick lines), and with percentile bands (inner band from

S S
25th to 75th percentile, outer band from 10th to 90th percentile). The bar at the top of the graph is red where
both the daily high and low are above average, blue where they are both below average, and white

otherwise. FOUNDATIONM
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UAS in Kotzebue — Operational Limits

* Range: Operations were limited to daytime and line
of sight (~¥2 nm) within the 10 nm LOS COA.

~« Clouds and Visibility: Operatlons were
visual line of sight and class E airspace weather
minimums (3 statute miles flight visibility and 500 ft
below any clouds).

GORDON AND BETTYRN
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UAS in Kotzebue — Takeoff
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UAS in Kotzebue — Flight Summary

* Tucson Integration:
e 7 Total Flights (3 hours)
e 2 Functional Check Flight (FCF) with Hover Test
* 5 Flights with Payloads (2 hours)
« ATOM, RAD, VNIR, DDuD payloads

. :ZFu—nctlo:n;I" ' éd(“FIlghti(FCF /er
“* 3 Flights with Payloads (6. &» ‘
« ATOM, RAD, VNIR payloads ~

* Kotzebue IOP:
* 12 Total Flights (30 hours; 5-hour Max) A .
* 9 Flights with Payloads (25 hours) RN CORDON AND BETTY]

 RAD, ATOM, VNIR, MET payloads MOORE

'3FCFS FOUNDATION
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-Surface Height (Laser)

-Sky & Surface Temperature
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UAS in Kotzebue — Accomplishments

24 Total Successful Flights (42 hours) with HQ-90B

17 Successful Flights with payloads.

* Demonstrated the ability to operate the HQ
technology in cold weather conditions.
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Surface Ellipsoid Height from LIDAR Over Waves - IDW Grid
Antarctica 1 - Flight 6 - Dec. 12014 - 08:49:23

Angle gate filter applied
(only +/- 10 degrees from nadir)

Grid Method: Inverse Distance Weighted
Cell Size: 1m
Search Radius: 3m

-58.48

Ellipsoid Height (m)

-59.27-59 51

-60.24




Surface Ellipsoid Height from LIDAR Over Sea Ice - IDW Grid

Antarctica 1 - Flight 6 - Dec. 1 2014 - 08:26:23

g

Ellipsoid Height (m)

-49.56-50.21

200
I icters

Grid Method: Inverse Distance Weighted
Cell Size: 20cm
Search Radius: 80cm







