# ROGER REVELLE MIDLIFE REFIT OVERHAUL

RVOC 19 APRIL 2018









# **Ship Check: 3D Scanning**

For specialized project sites that either lack sufficiently detailed plans or require a high level of layout accuracy. Scans provide the basis for development of the virtual model for unparalleled accuracy.

# Scanning



- Infrared laser scanner with 2mm accuracy at a range of 330m
- Multiple scans are combined creating encompassing scan of ship spaces



# Modeling



- 3D models reference scan data creating precise representations
- Actual scan data overlays
   3D model data showing
   as-is and to-be conditions



#### **Roger Revelle** Three Major Changes

## Repower

- 4 vs 6 engines
- Common Bus vs. Split Bus
- AC vs DC; Drives and Motors
- New Propulsion Transformers
- Generator Freshwater Cooling
- PM Motor Freshwater Cooling

To SWBD Room

To PM Room

# **Bow Thruster Replacement**



ZF Marine vs Tees White Gill



### Gondola



Suspended sensor housing vs hull mounted. Improved performance via reduced bubble over arrays.

# Scope of Work

#### 15 WPs. Criteria:

- 1. Considered critical to extending life
- 2. Or required to facilitate work that is critical
- 3. Or directly traceable to "green" goals

#### 9 WPs. Criteria:

- 1. Considered a major contributor life-extension
- And best completed while other invasive work is ongoing

#### 4 WPs. Criteria:

- 1. Reduces inspection risk
- 2. Or improves science capability

#### 11 WPs. Criteria:

- 1. Considered a non-major contributor to life extension
- And more easily completed during future maintenance windows

| _ [ | Priority | WP  | Name                                              |
|-----|----------|-----|---------------------------------------------------|
|     | 1        | 1   | Repower                                           |
|     | 1        | 2   | Bow Thruster Replacement                          |
|     | 1        | 5   | Z-Drive Inspection and Maintenance                |
|     | 1        | 6   | Ballast System Piping                             |
|     | 1        | 7   | Ballast Treatment System Installation             |
|     | 1        | 8   | Firemain System Piping Replacement                |
|     | 1        | 9   | Potable Water System Modifications                |
|     | 1        | 12  | Chiller Replacement                               |
|     | 1        | 13  | Sewage System and Drain Replacement               |
|     | 1        | 14  | Ship Stores Refrigeration Equipment Replace       |
|     | 1        | 23  | Ship Service Transformer Upgrades                 |
|     | 1        | 30  | Oily Water Separator (OWS) Replacement            |
|     | 1        | 34  | Overhead Lighting Upgrades                        |
|     | 1        | 36  | Drydocking                                        |
|     | 1        | 38  | Multibeam Gondola                                 |
| _   | 2        | 16  | Uncontaminated Seawater System Modifications      |
|     | 2        | 35  | Steel Replacement                                 |
|     | 2        | 37  | General Maintenance                               |
|     | 2        | 10A | A/C Spaces General                                |
|     | 2        | 10B | A/C Controls Upgrades                             |
|     | 2        | 10C | AHU-5 Zone Redesign                               |
|     | 2        | 10E | AHU-2 Makeup Air Upgrades                         |
|     | 2        | 11A | HVAC Makeup Air Upgrades                          |
|     | 2        | 32  | Crane Replacement                                 |
|     | 3        | 15  | Science Refrigeration System Modifications        |
|     | 3        | 27  | Bridge Wing Console Maintenance                   |
|     | 3        | 28  | Exterior Ballast and Fuel Tank Vent Modifications |
|     | 3        | 11C | Laundry Room Dryer Vent Modifications             |
| - 1 | 4        | 17  | Public Address System Modifications               |
|     | 4        | 18  | Dial Telephone System Modifications               |
|     | 4        | 20  | Navigation Lighting System Modifications          |
|     | 4        | 21  | Fire Detection System Modifications               |
|     | 4        | 24  | Aft Control Station Console Removal               |
|     | 4        | 25  | Computer Lab Console Modifications                |
|     | 4        | 29  | Hydraulic Oil Transfer Pump Installation          |
|     | 4        | 31  | Bosun Stores Access Modifications                 |
|     | 4        | 33  | Anchor and Chain Maintenance                      |
|     | 4        | 10D | Bow Thruster Room Air Conditioning                |
| _ [ | 4        | 11B | Generator Room Supply Fan Noise Mitigation        |

Not shown in table is the Contract Technical Specification, S-01 (different from a Work Package).

It directs the contractor on general administrative, technical and testing requirements related to the project.

# California-based Intermediate Class & smaller ships

Research vessels able to carry out California's local research and education needs have decreased from 3 to 1, with the last remaining ship approaching the end of its service life. A new vessel is needed.



#### INTERMEDIATE

R/V New Horizon 170 feet / 40-day endurance 11 12 crew / 19 scientists



Year



#### REGIONAL

R/V Pt Sur 135 feet / 21-day endurance 8 crew / 12 scientists



#### LOCAL / COASTAL

R/V Robert Gordon Sproul 125 feet / 14-day endurance 5 crew / 12 scientists



Needed 2020 onward

# Collaborating on a shared research vessel



Vision: establish a new kind of partnership within California, involving public and private universities, research institutions, state agencies and non-governmental organizations to support a new California Coastal Research Vessel (CCRV) for seagoing education and research.

#### Efforts to date:

- Moss Landing Marine Laboratories (California State University) and the Scripps Institution of Oceanography (University of California) have agreed to collaborate jointly on this effort.
- Committed significant seed funding from each institution
- Assembled Scripps Small Ship Task Force to define institutional needs
- Sent Dear Colleague letter to 100+ ship users statewide to solicit input
- Scripps began a DOT-sponsored feasibility study (with Sandia National Labs)
  of a zero-emission research vessel (ZERo/V), including conceptual design

# Hydrogen Fuel Cell Use in Maritime Applications





- ✓ Zero emissions
- ✓ No fuel Spills
- ✓ QuietOperation



SF-BREEZE Optimization



# **ZERO-V: Trimaran DESIGN**



#### Zero/V Mission

- Zero emissions
- General purpose R/V
- Coastal operations CA
- 2500 nm range
- Dynamic positioning
- 18 scientists, 11 crew
- Large lab spaces
- Large working deck
- Substantial over-the-side handling systems
- Low underwater noise
- Capable hydro acoustic suite

# VAN (20') WET LAB (650 SQ FT) (670 SQ FT)

#### **Vessel Particulars**

Length: 170'-0"

Beam: 56'-0"

Draft: 12'-0"

Depth: 21'-0"

Fuel Cell Power: ~ 1.4 MW

 $LH_2$ : ~ 8,000 kg