Acoustic Interference (on ADCP data)

RVTEC 2017 Duluth, MN

- ADCP data requires averaging
 - to reduce ping-to-ping (bin-to-bin) random noise
- "seeing interference" (visible amplitude spikes) may not mean damage to ADCP velocities
- UHDAS single-ping processing can eliminate most asynchronous interference

Acoustic Interference on ADCP data

- Possible approaches:
 - Free-running (asynchronous) instruments
 - use single-ping editing
 - Triggering (Synchronized ping)
 - Your Mileage May Vary (depends on science needs)

Free-running (asynchronous)

- maximizes ADCP ping rate
- interference from other instruments appears in signal return as random hits
- interference from other instruments can usually be edited out by CODAS single-ping algorithms

Example....

Singleping editing

Singleping editing

Pulse Synchronization (Triggering)

- can reduce ADCP ping rate (increase random error)
 - ONLY USE ONE TYPE OF PING if Synchronized
- can damage the ADCP data (where the other ping hits)
- makes it nearly impossible to edit out (single-ping)
- if "lucky":
 - ocean currents have lower resolution (and higher error)

• if unlucky:

- too few pings to be useful
- damage the pings that remain

Reduced ping rate due to triggering

Reduced ping rate and damage to 150m-250m range

summary: damage to ADCP data

- decreased ping rate
- long, loud pulse damages each ping
- interference lands at the same depth
 - UHDAS algorithm cannot detect the 'background'