
Continuous Observation Platforms.
Common Data Products.
QA/QC.
MAINTAIN a common sensor suite across class.
OPERATE resident sensors to run continuously.
PERFORM near real-time QC to promote QA

The datapresence problem space – where do we fit?
C

O
$T

COMPLEXITY

PROBLEM
SPACE

exploration

hypothesis
driven

High Complexity / Unique:
Problem
 Too many techs not enough shipboard science
Solution
 connect shoreside science with A/V tech

Lower Complexity / More Common:
Traditional seagoing technician/scientist ratio –
 science outnumbers tech support
Hidden Problem-
 Awash in data, logistics, etc.
Solution –
 Turn data to information off the ship

The Datapresence Problem Statement:
In Other Words, Why?

By nature seagoing research is resource limited:
–  Time at sea – you’ve got the time you’ve got and only one chance
–  Active participants – you’ve only got so many bunks
–  Technology on hand – can’t easily scale up and out
–  Connectivity – information, social, other..

Potential Impacts:
–  Reduced situational awareness
–  Reduced data quantity & quality
–  Unrealistic expectations & workload
–  Impaired ability to act adaptively
–  Reduced access to traditional support networks

Needs Assessment:

AUDIENCE - Who are we targeting?

DEMAND – What do they need?

PRODUCT – What are we offering?

SERVICE – How are we providing it?

YES.

YES..

YES...

YES....

Current Datapresence Functional Model

Service Requirements

•  Data Discovery – UI has “portal like” capabilities
•  Data Access – Erddap and other data services (map services,

file shares..)
•  Chart/Plot Data Visualization – UI time series visualizations
•  Map Data Visualization – Sikuliaq like mapserver

implementation with GMRT base layers
•  Data Replication – mirror full resolution content to shore
•  Event Notification – Users can create custom notifications
•  Shipboard QA/QC – Flagging and notification
•  Shoreside QA/QC – FTE for sensor technician oversight

Synchronizing the data store
Target Requirements:

–  Synchronize all “simple” vector time series data at full resolution
–  Synchronize continuously instead of episodically
–  Use COTS solution if possible, don’t roll-your-own
–  Use a reliable or consistent method

Options:
–  File Transfer (rsync) - simple (but you need to roll your own mgmt. logic), episodic
–  Shared Database – pub/sub model, asynchronous (store and forward changes)
–  Messaging – many models, some do guarantee reliable delivery, message-oriented-

 middleware (MOM), again some considerable assembly required.

Database Replication
Currently Testing EDB PostgreSQL’s xDB Replication Server
•  Write Ahead Logs are used to protect against data loss
•  You can ship the logs to remote db and play them forward

•  Performance is great in a local area network
•  Can push logs as frequently as once per second

•  Out of the box performance isn’t so great over high latency
(RTT = 850ms) and high packet loss networks.

OPTIMIZATION
•  Change TCP send and receive window size, disable slow start, selective acks, etc.
•  During tests on Endeavor (April 2017) we replicated 12 sensors collecting at 2 Hz

•  Utilization - Ship to Shore ~59 kbps (175 kbps spikes)
•  Gracefully handles outages: 20 minute outage (over 28,000 transaction backlog)

Data Services:

User Interface components built on the Django
Rest Framework.

•  Data is serialized as JSON & geoJSON
•  Integrates easily into javascript plotting

libraries like Highcharts, D3, etc.
•  Modify URL with query parameters to:

 Window/Filter/Order/etc.

Data Services: For Users

Web User Interface: Sensor Status

Flag driven Alert Example

Web User
Interface:
Sensor Specific
Time Series
Plots

Web User Interface: Maps

Next Steps:
1.  Collaborate:

–  I used to hear things like “you can’t do that” and “good luck”
–  Now I’m hearing “I want to do that also”

2.  Fork:
–  Fork off branches to develop alternate methods for:

•  Synchronizing the data store (file or message models)
•  Data delivery to clients (web sockets)

3.  Human engineering:
–  Noting beats demonstrated success and performance

Acknowledgements
Special thanks to the shipboard scientific support teams:

 Oceanus – Andrew Woogen, Croy Carlin, Brendan D’Andrea
 Endeavor - Bill Fanning, Lynn Butler, and Erich Gruebel
 Sikuliaq Science Support - Steve Hartz, John Haverlack, Ethan Roth & Bern McKiernan

..and to our other science support heroes:
 URI Inner Space Center – Dwight Coleman & Derek Sutcliffe
 UHDAS – Jules Hummon & Toby Martin
 MGDS @ LDEO – Vicki Ferrini & Rose Anne Weissel
 R2R & SAMOS

...and finally to those brave enough to share with us their ship time:
 OSU – Miguel Goni, Angel White, Clare Reimers
 URI – Jamie Palter
 OOI – Ed Dever, Jonathan Fram, Johna Winters, and Steve Lambert

