Continuous Observation Platforms. Common Data Products. QA/QC.

MAINTAIN a common sensor suite across class.OPERATE resident sensors to run continuously.PERFORM near real-time QC to promote QA

The datapresence problem space – where do we fit?

High Complexity / Unique: Problem

Too many techs not enough shipboard science **Solution**

connect shoreside science with A/V tech

Lower Complexity / More Common: Traditional seagoing technician/scientist ratio – science outnumbers tech support Hidden Problem-Awash in data, logistics, etc.

Solution –

Turn data to information off the ship

The Datapresence Problem Statement: In Other Words, Why?

By nature seagoing research is resource limited:

- Time at sea you've got the time you've got and only one chance
- Active participants you've only got so many bunks
- Technology on hand can't easily scale up and out
- Connectivity information, social, other..

Potential Impacts:

- Reduced situational awareness
- Reduced data quantity & quality
- Unrealistic expectations & workload
- Impaired ability to act adaptively
- Reduced access to traditional support networks

DEMAND – What do they need? YES..

PRODUCT – What are we offering? YES...

SERVICE – How are we providing it? YES....

RCR

Service Requirements

- **Data Discovery** UI has "portal like" capabilities
- **Data Access** Erddap and other data services (map services, file shares..)
- Chart/Plot Data Visualization UI time series visualizations
- Map Data Visualization Sikuliaq like mapserver implementation with GMRT base layers
- Data Replication mirror full resolution content to shore
- Event Notification Users can create custom notifications
- Shipboard QA/QC Flagging and notification
- Shoreside QA/QC FTE for sensor technician oversight

Advanced Datapresence For a New Generation of Research Vessels **Datapresence System Architecture** Christopher Romsos, Jasmine Nahorniak, Katie Watkins-Brandt, Demian Bailey, Clare Reimers **Oregon Stat** College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oreaon, USA UNOLS Callege of Earth. Ocaan Component Lavers Data Acquisition Workflow Datapresence Workflow (Shares sensor, sensor-network interface, and data network with acquisition workflow) CLIENT LAYER SUDS CLIENTS DATAPRESENCE CLIENTS Shipboard Scientific Party Shipboard Scientific Party Leallet 0 R2R & SAMOS Shoreside Scientific Party & other shoreside actors mari i tableau rvdata.us SERVICE INTERFACE FILES: SMB/CIFS, NFS, FTP FILES: SMB/CIFS, NFS DATA: ERDDAP, REST MAPS: ESRI MAP, WMS, WFS PUB/SUB: Websockets SERVICE LAYER LOCAL DATA ACCESS Data Server Map & GIS Server Notification Server File Server Hourly files distributed L1: Annotated Data STACK: via web accesible folders L2: Calibrated Data Django (w/channles) and network attached PostareSOL L3: Binned Data storage Calibration PostGIS L4: Derived Products **EDB Replication Server** Processing Single Master Replication Multi Master Replication **Ouality Assessment** MongoDB SHIPSIDE SHORESIDE Cassandra DATASTORE DATASTORE NETWORK-**AGGREGATORS & UTILITIES** STACK: 2016-2017 Prototype Efforts: AGGREGATORS UTILITIES DATA STORE Input: Standardized UDP data packe Python Aggregator & Utilities Input: Standardized UDP data packets Merge Sensors Output: Files Django Single master replication INTERFACE rocesses: Parse XML Output: Database objects Georeference Multi master replication Write CSV Files Processes: Parse XML, Write to DB Derived Measures Map and Data Services Web Client development and testing TRANSPORT LAYER DATA NETWORK DATA NETWORK L1: Annotated Data Physically (solated (air-gapped) Physically Isolated (air-gapped) data distribution network 10G OM4 Fiber & CAT7 Backbone (L0 Data encapsulated for transport) SENSOR-NETWORK SUDS DAS BOARD RCRV DAS BOARD (Raspberry Pi 3) INTERFACE Input: Analog & Serial Observations 2015-2016 Prototype Efforts: Input: Serial Observations Output: UDP packets with Standardized Developed RPi Sensor-Network Interface Software Output: UDP packets with Standardized XML payload XML payload RCRV RPi's broadcast SUDS Version 2 SML: Is serial E) analog SENSOR LAYER Example Sensors: Observations Atmosphere LO: Raw Data Singlebeam echosounder, Temperature, Pressure, and Humidity sensors, Pyrometer, Ocean Surface Radiometer, Anemometer, Ocean Rain gauges, and others. Sensors

Synchronizing the data store

Target Requirements:

- Synchronize all "simple" vector time series data at full resolution
- Synchronize continuously instead of episodically
- Use COTS solution if possible, don't roll-your-own
- Use a reliable or consistent method

Options:

- File Transfer (rsync) simple (but you need to roll your own mgmt. logic), episodic
- Shared Database pub/sub model, asynchronous (store and forward changes)
- Messaging many models, some do guarantee reliable delivery, message-orientedmiddleware (MOM), again some considerable assembly required.

Database Replication

Currently Testing EDB PostgreSQL's xDB Replication Server

- Write Ahead Logs are used to protect against data loss
- You can ship the logs to remote db and play them forward
- Performance is great in a local area network
 - Can push logs as frequently as once per second
- Out of the box performance isn't so great over high latency (RTT = 850ms) and high packet loss networks.

OPTIMIZATION

- Change TCP send and receive window size, disable slow start, selective acks, etc.
- During tests on Endeavor (April 2017) we replicated 12 sensors collecting at 2 Hz
 - Utilization Ship to Shore ~59 kbps (175 kbps spikes)
 - Gracefully handles outages: 20 minute outage (over 28,000 transaction backlog)

Data Services:

User Interface components built on the Django Rest Framework.

- Data is serialized as JSON & geoJSON
- Integrates easily into javascript plotting libraries like Highcharts, D3, etc.
- Modify URL with query parameters to: Window/Filter/Order/etc.


```
() sardinops.coas.oregonstate.edu:8001/cur_obs/
                                                                               9 4 51 6
Django REST framework
  Api Root Cur Obs
Cur Obs List
                                                                           OPTIONS
                                                                                        GET
 GET /cur_obs/
 HTTP 200 OK
 Allow: GET, OPTIONS
 Content-Type: application/json
 Vary: Accept
     "type": "FeatureCollection",
     "features": [
            "id": 1,
             "type": "Feature".
             "geometry":
                 "type": "Point"
                 "coordinates":
                     -124.087445
                     44.6075778333
             "properties":
                 "gnss_gga_bow_collection_date": "2017-10-20T21:55:08.724459Z"
                 "gnss_gga_bow_latitude": 44.6075778333333
                 "gnss_gga_bow_longitude": -124.087445,
                 "gnss_gga_bow_latitude_flags": "111111111",
                 "gnss_gga_bow_longitude_flags"; "111111111",
                 "gnss_gga_bow_point_flags": "111111111",
                 "gnss_vtg_bow_collection_date": "2017-10-20T21:55:08.710883Z"
                 "gnss_vtg_bow_sog": 8.86,
                 "gnss_vtg_bow_cog": 242.3,
                 "gnss_vtg_bow_sog_flags": "11111111"
                 "gnss_vtg_bow_cog_flags": "11111111"
                 "gyro_brdg_collection_date": "2017-10-20T21:55:08.6991712".
                 "gyro_brdg_heading": 238.0.
                 "gyro_brdg_heading_flags": "11111111",
                 "anemo_mmast_collection_date": "2017-10-20T21:55:08.6884082"
                 "anemo_mmast_speed": 13.12,
                 "anemo mmast direction": 340.54,
```

"anemo_mmast_speed_flags": "11111111", "anemo_mmast_direction_flags": "11111111",

"metstn_stbd_temperature": 9.2, "metstn_stbd_pressure": 1021.4, "metstn_stbd_relative_humidity": 101.9, "metstn_stbd_temperature_flags": "11111111", "metstn_stbd_pressure_flags": "11111111",

"metstn_stbd_collection_date": "2017-10-20T21:55:08.696865Z"

+

UNOLS

Web User Interface: Sensor Status

Cruise Map Rea	litime Plots + Ser	nsor Status Data + Help					
					_		
Tue Mar 14 2017 21:52:11 UTC					44.59380° N, -124.13268°		
R/V Oceanus	Dashbo	ard					
Sensor Status							
Flag driven Alert Example					status	ok mild warning medium warning	severe warning ina
Water depth - Echosounder	-9999.0 m	Water temperature - Intake	10.3255 °C	Water temperature - Hull	10.9851 °C	Water temperature - TSG	11.5761 °C
Water salinity - TSG	32.3696 PSU	Water attenuation	3.952 m ⁻¹	Water fluorescence	0.8886 V	Vessel speed	11.12 knots
Vessel course	•? °True	Vessel heading	111.9 °	Air temperature - Stbd	10.1 °C	Air pressure - Stbd	1016.9 hPa
Air relative humidity - Stbd	110.0 %Hm	Air temperature - Bow	10.8 °C	Air relative humidity - Bow	79.5 %RH	PAR	-0.0002 V
	175.0	SW radiation	-2048.0	Precipitation	0.0073 V	Wind speed	8.7 knots
IR radiation						Los-Los r	
IR radiation Wind direction	340.58 °	True wind speed	19.82 knots	True wind direction	92.4 °	True winds u	-19.80 knots

This project was funded by the National Science Foundation.

For more information, please contact Chris Romsos (RCRV Datapresence Systems Engineer).

UNOLS

10.5.1.202:8001/sensor/info/avro002/

Datapresence Dashboard

Cruise Map

Thu Oct 26 2017 02:41:39 UTC 44.07423° N, -124.43955° E

Next Steps:

- 1. Collaborate:
 - I used to hear things like "you can't do that" and "good luck"
 - Now I'm hearing "I want to do that also"
- 2. Fork:
 - Fork off branches to develop alternate methods for:
 - Synchronizing the data store (file or message models)
 - Data delivery to clients (web sockets)
- 3. Human engineering:
 - Noting beats demonstrated success and performance

Acknowledgements

Special thanks to the shipboard scientific support teams:

Oceanus – Andrew Woogen, Croy Carlin, Brendan D'Andrea

Endeavor - Bill Fanning, Lynn Butler, and Erich Gruebel

Sikuliaq Science Support - Steve Hartz, John Haverlack, Ethan Roth & Bern McKiernan

.. and to our other science support heroes:

URI Inner Space Center – Dwight Coleman & Derek Sutcliffe UHDAS – Jules Hummon & Toby Martin MGDS @ LDEO – Vicki Ferrini & Rose Anne Weissel R2R & SAMOS

...and finally to those brave enough to share with us their ship time:

OSU - Miguel Goni, Angel White, Clare Reimers

URI – Jamie Palter

OOI – Ed Dever, Jonathan Fram, Johna Winters, and Steve Lambert

