

INSTITUTE FOR GEOPHYSICS

TEXAS Geosciences

The University of Texas at Austin Jackson School of Geosciences *Institute for Geophysics*

Science opportunities with Langseth long streamer/OBS & FWI

Adrien Arnulf

MLSOC / MSROC meeting - San Francisco Dec 11th, 2016

Marine Geophysicists - Who are we?

Numerical Methods

Today's focus

Science opportunities with Langseth long streamer/OBS & FWI

G.LANGSETH

Seismic capabilities: _ For 2D seismic: 15 km long streamer _ For 3D seismic: 4*6 km-long streamers _ Deployment and recovery of OBSs

Seismic Investigation of the Hikurangi margin, NZ Science opportunities with Langseth long streamer/OBS & FWI

250 m resolution bathymetry data courtesy of NIWA

Seismic Investigation of the Hikurangi margin, NZ Science opportunities with Langseth long streamer/OBS & FWI

Velocity

Velocity gradient

Seismic Investigation of the Hikurangi margin, NZ Typical OBS tomography

10km

10km

OBSs

OBSs

CONs: Sparse Instrumentation

Ill-constrained problem relying heavily on Regularization

Resolution is well below the typical definition of geological features observed at convergent margins

PROs:

Gives physical properties of the Earth (Velocity, attenuation, Vp/Vs)

6

Velocity gradient

250 m resolution bathymetry data courtesy of NIWA

Velocity

Seismic Investigation of the Hikurangi margin, NZ Alternative - MCS processing

250 m resolution bathymetry data courtesy of NIWA

PR

- 2+ der of
- ma

Can we do better by unifying spa emphasis on the best of both worlds ? Ve

pai ameters)

Common processing: "time" vertical axis

tion Plaza et al., (G3, in press)

Full Waveform Inversion of longoffset streamer (+OBSs)

YES

Velocity gradient

Seismic Investigation of the Hikurangi margin, NZ

Advanced streamer processing

250 m resolution bathymetry data courtesy of NIWA

Elastic Full Waveform Inversion Model This is not an Image !

Here you are looking at a data-driven highresolution physical model of the Earth.

Velocity

Elastic FWI infers the elastic parameters of the Earth (i.e. shear and bulk modulus, density).

Velocity gradient

"Demystifying The Adjoint-State Method"

Synthetic Ocean Bottom Experiment (SOBE) "Mimicking a seafloor tomography experiment from surface data"

Crucial information contained in the refracted wave.

The current *M. Langseth*, 2D, 15-km-long streamer is a "state-of-the-art" data acquisition tool. Future data acquisition and processing will undoubtedly have a dramatic scientific impact !

Synthetic Ocean Bottom Experiment (SOBE)

"Mimicking a seafloor tomography experiment from surface data"

Sea surface deployment

Half SOBE deployment

Full SOBE deployment

Source & Receivers on the sea surface

Source on the sea surface & Receivers on the seafloor

Source & Receivers on the seafloor

SOBE ray-based tomography Creating a "not so smooth" starting model for FWI

inversion NZ38: _ 465 shots (every 5th) _ 15 iterations

Model: _ 4481*321 pts ~1.4 M grid points _ 25m regular grid

Starting model was a smooth version of the PSDM model

2.5

2

3

5

4

6

Distance (km)

7

8

9

10

11

12

FWI Method "Demystifying The Adjoint-State Method"

1st stage: "Calculating the adjoint wave field" & Source-side illumination compensation ~Hessian

FWI Method "Demystifying The Adjoint-State Method"

2nd stage: Lamé parameters and density gradient (Mora 1987) + receiverside illumination compensation

$$\begin{split} \mathbf{G}^{T} \delta \mathbf{u}_{\rho} &= -\sum_{shots} \int_{0}^{T} dt \left(\overleftarrow{v_{x}} \overrightarrow{v_{x}} + \overleftarrow{v_{z}} \overrightarrow{v_{z}} \right), \\ \mathbf{G}^{T} \delta \mathbf{u}_{\Sigma} &= -\frac{1}{\left(\underbrace{f} \left(\overleftarrow{f} \overrightarrow{z} e\right)^{2}} \sum_{s \in [t]} \int_{0}^{T} dt \left(\overleftarrow{\tau_{xx}} + \overleftarrow{\tau_{zz}} \right) \left(\overrightarrow{\tau_{xx}} + \overrightarrow{\tau_{zz}} \right), \\ \mathbf{G}^{T} \delta \mathbf{u}_{\mu} &= \frac{\lambda \left(\lambda + 2\mu \right)}{4\mu^{2} \left(\lambda + \mu \right)^{2}} \sum_{shots} \int_{0}^{T} dt \left(\underbrace{f} \overrightarrow{v_{xx}} \overrightarrow{\tau_{zz}} + \overleftarrow{\tau_{zz}} \overrightarrow{\tau_{xx}} \right) \\ \mathbf{G}^{T} \delta \mathbf{u}_{\mu} &= \frac{\lambda \left(\lambda + 2\mu \right)}{4\mu^{2} \left(\lambda + \mu \right)^{2}} \sum_{shots} \int_{0}^{T} dt \left(\underbrace{f} \overrightarrow{v_{xx}} \overrightarrow{\tau_{xx}} + \overleftarrow{\tau_{zz}} \overrightarrow{\tau_{zz}} \right) \\ \mathbf{G}^{T} \delta \mathbf{u}_{\mu} &= \frac{\lambda \left(\lambda + 2\mu \right)}{4\mu^{2} \left(\lambda + \mu \right)^{2}} \sum_{shots} \int_{0}^{T} dt \left(\underbrace{f} \overrightarrow{v_{xx}} \overrightarrow{\tau_{xx}} + \overleftarrow{\tau_{zz}} \overrightarrow{\tau_{zz}} \right) \\ &= \frac{1}{\mu^{2}} \sum_{shots} \int_{0}^{T} dt \left(\overleftarrow{\tau_{xz}} \overrightarrow{\tau_{xz}} \right). \end{split}$$

Velocity and density updates:

$$egin{array}{rcl} \deltalpha &=& 2
holpha\delta\lambda, \ \deltaeta &=& -4
hoeta\delta\lambda+2
hoeta\delta\mu, \ \delta\hat
ho &=& \left(lpha^2-2eta^2
ight)\delta\lambda+eta^2\delta\mu+\delta
ho. \end{array}$$

FWI Method

"Gradient summation between iterations 50 & 51"

FWI is based on the summation of constructive energy

_ 2321 SOBE shots (spacing: 37.5 m) run in parallel.
_ 12.5 m regular grid _____0 to 5 s data window
_ 3-20 Hz inversion (pick frequency: 12 Hz)

FWI Method

FWI is based on the summation of constructive energy

1 shot every 200m

Spatial sampling is ESSENTIAL (streamer or OBS)

FWI Method

FWI is based on the summation of constructive energy

Elastic Full Waveform Inversion - Hikurangi Margin, NZ

Seismic Line NZ38 - velocity structure evolution

- inversion NZ38: _ 2321 shots _ 60 iterations
- Model:
- _ 8976*801 pts
- ~7.2 M grid points
- 12.5m regular grid
 5001 timesteps
- _ time window 0-5 s _ dt = 0.001s
- Data:
- _~4 to 20 Hz
- _ pick f. 12Hz
- _ target data: refraction then reflectivity

FWI of OBS data

Long streamer and OBS data could and SHOULD be inverted jointly.

21

Future FWI applications

Application of 3D Elastic FWI.

(... Viscoelastic & Poroelastic & Anisotropic) ---

—> "To better characterize Earth properties and processes which are highly 3D."

Multi-parameters inversion: Seismic + Electromagnetic (CSEM, MT) + Gravity —

- ---> "EM is sensitive to fluids (magma, water, oil, .)"
- ---> "Improving the as pattal resolution of EM methods km

FWI & RTM using Oceanin Battom Seismome

- --> "Required to image the deepest part of the cru
- ---> "Essential in deep water environments and/or for dee

targets where the longest streamers (~15 km) would fail

Range (km)

Other application of FWI **Axial Volcano** Magmatic system

Velocity Gradient

Other application of FWI Imaging hydrothermal roots beneath Endeavor vent fields, JDFR

Estimated permeability