

NOAA UAS Operations

Scientific Committee for Oceanographic Aircraft Research (SCOAR)

April 14, 2015

CAPT Philip Hall, OMAO

NOAA Unmanned Aircraft Systems OMAO Partnership with OAR

- OMAO Responsible for UAS Operations
 - Safety, Operational, and Airworthiness review of all UAS operations
 - UAS Pilots (Puma, VTOL, Global Hawk) full and part time
 - FAA Certification of Authorization (COA) and FAA liaison for UAS
 - Subject matter experts for UAS transition to operations
- UAS Program Office (OAR)
 - UAS research and demonstrations
 - Sensing Hazards with Operational Unmanned Technology (SHOUT)
 (Partnership with NASA Global Hawk Hurricane Sandy DRA funds)
- OMAO Updating NOAA Administrative Order for Aircraft to Include UAS

UAS Operations

APH-22 Hexacopter – NMFS/OMAO

Sensintel Coyote – OAR/UASPO/OMAO

AeroVironment Puma AE NOS/UASPO/OMAO

Insitu Scan Eagle
2015 Marine Mammal Arctic Study
NMFS/OMAO/ONR/UASPO/BOEM

USCG Arctic Shield

Killer Whale Survey

NASA Global Hawk Partnership Sensing Hazards with Operational Unmanned Technology (SHOUT)

NOAA's Unmanned Platforms

Type	Asset	Quantity	Location	Custodian	Status
UAS	GlobalHawk	1	Wallops	NASA	Ор Т&Е
UAS	RQ-20A Puma AE DDL	6	Tampa, FL	OMAO	R20
UAS	MD4-1000 Quadcopter	1	Tampa, FL	OMAO	R20
UAS	Coyote expendable	1	Tampa, FL	OMAO	R20
UAS	WMD-59 Quadcopter	1	Tampa, FL	OMAO	Training platform
UAS	Hexacopter	4	San Diego, CA	NMFS	Operational
UAS	Hexacopter	2	Seattle, WA	NMFS	Ор Т&Е
UAS	SkyWisp	3	Boulder, CO	OAR	Ор Т&Е
UAS	Manta	2	Seattle, WA	OAR	Ор Т&Е
UUV	Remus 600	1	Silver Spring	NOS	Ор Т&Е
UUV	Remus 100	2	Silver Spring	NOS	Ор Т&Е
UUV	Seabed	1	Seattle, WA	NMFS	Ор Т&Е
UUV	OceanServer Iver 2	2	Various	NMFS / NOS	Ор Т&Е
UUV	HaborScan	1	Silver Spring	NOS	Ор Т&Е
USV	Emily	10	Various	OAR	Op T&E
USV	WaveGlider	4	Stennis / Seattle	NWS / OAR	Op T&E
USV	Profiling Glider	2	Stennis / Miami	NWS	Ор Т&Е

NASA & NOAA Partnership Sensing Hazards with Operational Unmanned Technology (SHOUT)

SHOUT Objectives

Overall Goal

 Demonstrate and test prototype UAS concept of operations that could be used to mitigate the risk of diminished high impact weather forecasts and warnings in the case of polar-orbiting satellite observing gaps

Objective 1

- Conduct data impact studies
 - Observing System Experiments (OSE) using data from UAS field missions
 - Observing System Simulation Experiments (OSSE) using simulated UAS data

Objective 2

 Evaluate cost and operational benefit through detailed analysis of lifecycle operational costs and constraints

