




### **OOI** Data Management

January 15, 2015













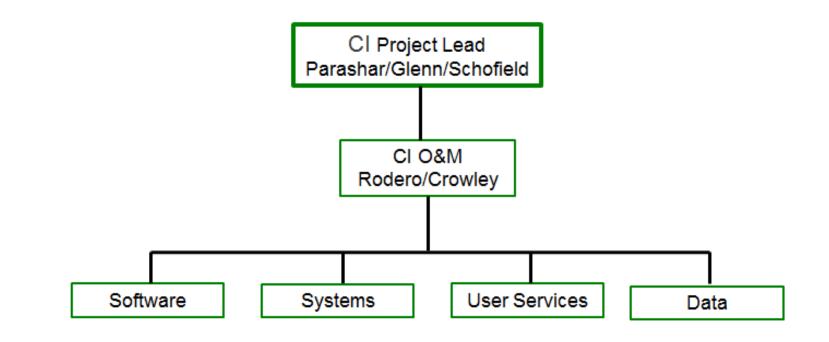








## Data User Groups

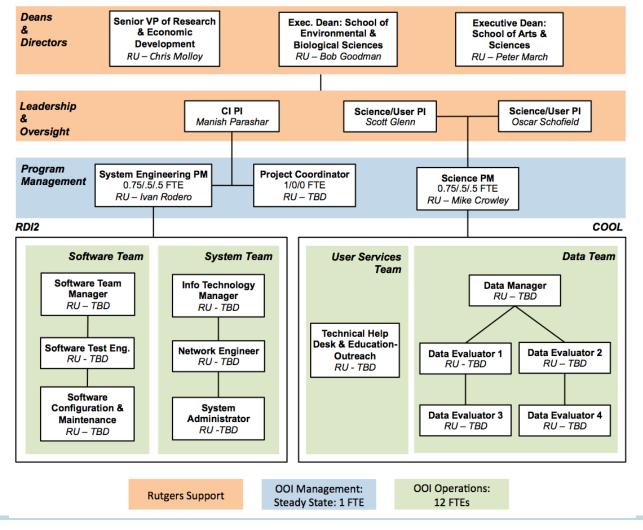

- OOI CI CONOPS has the following categories of users:
  - Science
  - Education and Outreach
  - OOI Operations Users
  - Data Manager/Evaluators
  - Configuration & Observatory Asset Data Management
  - Cyberinfrastructure Management
  - OOI Management & Observatory Director







### **CI O&M Organization**







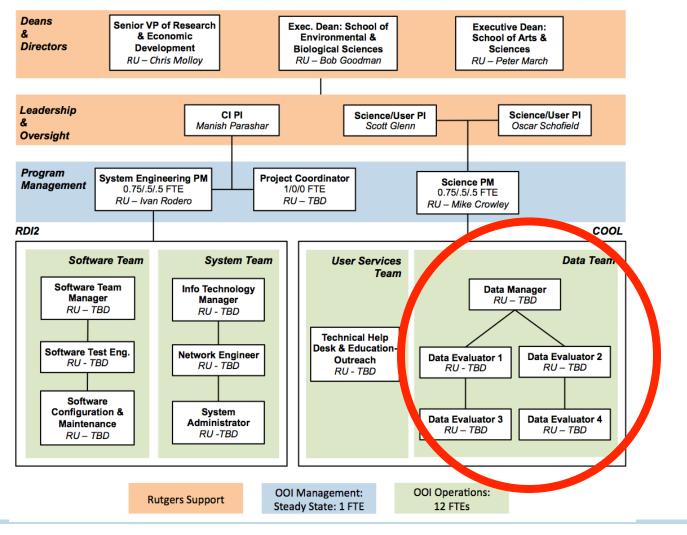



### **Rutgers CI Structure in O&M**












4



### **Rutgers CI Data Team**











5

UNIVERSITY of

WASHINGTON



### **Data Management Team**

- Data Manager (1)
  - Ph.D. + Observatory Experience
  - Manage the data lifecycle
  - Manage the data evaluators
  - Primary human interface for data access & feedback
- Data Evaluators (4)
  - Senior level Ph.D. or MS + Experience
  - Regular level MS or BS + Experience
  - Monitor automated Quality Control
  - Regular and directed human-in-the-loop QC
  - Designated for Global, Cabled, Endurance & Pioneer





7

### **Data Manager - Hired**

| <b>ISU</b> Oregon State University                    |                                                                     |                                                                                                                                                                                                                                            |                                                              | Find                  | people and pages       | Search CEOAS |
|-------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------|------------------------|--------------|
| College of Earth, Ocean, and Atmospheric Sciences     |                                                                     |                                                                                                                                                                                                                                            |                                                              |                       |                        |              |
| Home Direc                                            | tory                                                                | Research                                                                                                                                                                                                                                   | Academics                                                    | Ships                 | Facilities             | About        |
| Future Students Faculty                               | & Staff                                                             | Alumni                                                                                                                                                                                                                                     | Friends & Donors                                             | Employment            | Outreach               | News         |
| Directory of People                                   | Michae                                                              | l Vardaro                                                                                                                                                                                                                                  | Assistant Professor (Se                                      | ppior Posparch) - OOL | Assoc Broject Scientis |              |
| Search                                                | (                                                                   | -                                                                                                                                                                                                                                          | Discipline: Ocean Ecolog                                     |                       |                        |              |
| Everyone (with photos)<br>Advisors (undergraduate)    |                                                                     |                                                                                                                                                                                                                                            | Office: Burt 295<br>Phone: 541-737-9350<br>Fax: 541-737-2064 | y and biogeochemistry |                        |              |
| Business Office                                       | Email: <u>mvardaro@coas.oregonstate.edu</u><br>Vita or Résumé (PDF) |                                                                                                                                                                                                                                            |                                                              |                       |                        |              |
| Job Category                                          | _                                                                   |                                                                                                                                                                                                                                            |                                                              |                       |                        |              |
| Deans                                                 | Researc                                                             | h Interests                                                                                                                                                                                                                                |                                                              |                       |                        |              |
| Teaching & Research Faculty Faculty Specialties       | •                                                                   | Deep-sea biogeochemistry, with specializations in remote sensing, invertebrate biology, time-lapse underwater photography, climate variability and change, and surface-to-seafloor connectivity.                                           |                                                              |                       |                        |              |
| Research Assoc., Postdoc,<br>Faculty Research Assist. | Current                                                             | Research                                                                                                                                                                                                                                   |                                                              |                       |                        |              |
| ( <u>RAFRA)</u><br>Graduate Students                  |                                                                     | I am an associate project scientist on the Ocean Observatories Initiative, an NSF-funded project to record long-term environmental changes and short-term events in the marine ecosystem on a Coastal, Regional, and Global scale. My      |                                                              |                       |                        |              |
| <u>Geography</u>                                      | •                                                                   | portion of the project is to help design, test, and deploy the Endurance Array off the coast of Oregon and Washington.                                                                                                                     |                                                              |                       |                        |              |
| <u>Geology</u>                                        |                                                                     | Endurance will consist of a series of moorings and seafloor observatories, some self-contained and others connected to electro-optical cables to provide real-time data and power, and will be instrumented with various types of sensors, |                                                              |                       |                        |              |
| <u>MRM</u>                                            | •                                                                   | cameras, and autonomous vehicles.                                                                                                                                                                                                          |                                                              |                       |                        |              |
| <u>OEAS</u>                                           |                                                                     |                                                                                                                                                                                                                                            |                                                              |                       | <u></u>                |              |









# **Deployed Scope of OOI** (over 800 instruments distributed over all moorings, benthic packages, seafloor nodes, gliders and AUVs)

#### **Global Arrays**

#### **Coastal Arrays**

| Subsystems      | Components                           | Instruments | Service Frequency |
|-----------------|--------------------------------------|-------------|-------------------|
| Global Arrays   |                                      | -           |                   |
| Station Papa    | 1 Subsurface Hybrid Profiler Mooring | 12          | Yearly            |
|                 | 2 Flanking Moorings                  | 32          |                   |
|                 | 3 Gliders                            | 9           |                   |
| Irminger Sea    | 1 Surface Mooring                    | 23          | Yearly            |
|                 | 1 Subsurface Hybrid Profiler Mooring | 12          | -                 |
|                 | 2 Flanking Moorings                  | 32          |                   |
|                 | 3 Gliders                            | 9           |                   |
| Southern Ocean  | 1 Surface Mooring                    | 23          | Yearly            |
|                 | 1 Subsurface Hybrid Profiler         | 12          |                   |
|                 | 2 Flanking Moorings                  | 32          |                   |
|                 | 3 Gliders                            | 9           |                   |
| Argentine Basin | 1 Surface Mooring                    | 23          | Yearly            |
|                 | 1 Subsurface Hybrid Profiler         | 12          |                   |
|                 | 2 Flanking Moorings                  | 32          |                   |
|                 | 3 Gliders                            | 9           |                   |

| Subsystems                  | Components                            | Instruments | Service Frequency |  |
|-----------------------------|---------------------------------------|-------------|-------------------|--|
| Coastal Arrays              |                                       |             |                   |  |
| Pioneer                     | 3 Surface Moorings                    | 60          | Twice a year      |  |
|                             | 2 Surface-Piercing Profilers Moorings | 18          | 1                 |  |
|                             | 5 Profiler Moorings                   | 29          | 1                 |  |
|                             | 3 AUVs                                | 18          | 1                 |  |
|                             | 6 Gliders                             | 30          |                   |  |
| Endurance (Oregon Line)     | 3 Surface Moorings                    | 50          | Twice a year      |  |
|                             | 2 Surface-Piercing Profilers Moorings | 18          | 1                 |  |
|                             | 1 Hybrid Profiler Mooring             | 16          | 1                 |  |
|                             | 1 Benthic Experiment Package          | 10          | 1                 |  |
|                             | 1 Multi-Function Nodes                | 8           | l                 |  |
| Endurance (Washington Line) | 3 Surface Moorings                    | 68          | Twice a year      |  |
|                             | 2 Surface-Piercing Profilers Moorings | 18          | 1                 |  |
|                             | 1 Profiler Mooring                    | 5           | 1                 |  |
|                             | 6 Gliders                             | 30          |                   |  |

### **Cabled Arrays**

| Subsystems           | Components                      | Instruments | Service Frequency |
|----------------------|---------------------------------|-------------|-------------------|
| Regional Scale Nodes |                                 |             |                   |
| Hydrate Ridge        | Seafloor: Primary and Secondary | 16          | Yearly            |
| -                    | Profiler – Winched              | 10          |                   |
|                      | Profiler – Wire crawler         | 5           |                   |
|                      | Midwater Platform@ 200m         | 8           |                   |
|                      | Bottom Instrument Package       | 6           |                   |
| Axial Seamount       | Seafloor: Primary and Secondary | 26          | Yearly            |
|                      | Profiler – Winched              | 10          | -                 |
|                      | Profiler – Wire crawler         | 5           |                   |
|                      | Midwater Platform @ 200m        | 8           |                   |
|                      | Bottom Instrument Package       | 6           |                   |

Connected by 880km of seafloor cable, with 10KW power, internet connectivity between 7 primary nodes, multiple secondary nodes, and all distributed instrumentation

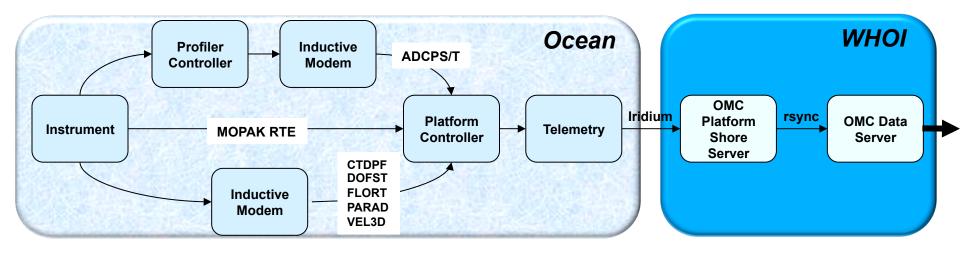
### Cyberinfrastructure

| Computing pl<br>network equi | latforms, software applications, storage, and high speed pment |
|------------------------------|----------------------------------------------------------------|
| Acqu                         | of Presence (CyberPoPs)<br>iisition Points<br>ibution Points   |
| •                            | oservatory Network – OOI Net<br>ware / Software                |
| Redundant co                 | omputing environment                                           |

### Extensive details about each component can be found on the OOI website (http://oceanobservatories.org)

**RUTGERS** 












### **Data Flow Example: Pioneer Profiler**













### **Types of Data Acquired**

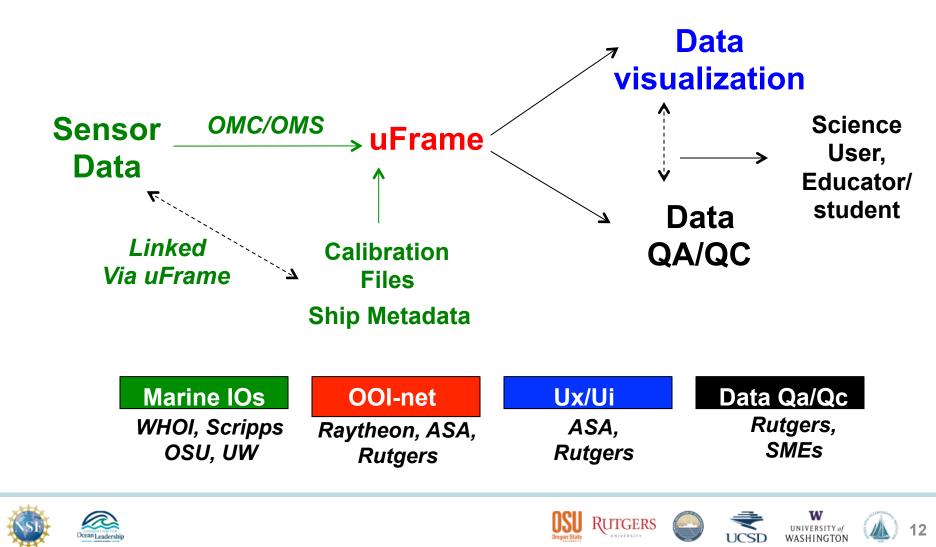
- Telemetered (Global, Pioneer, Endurance Arrays)
  - Near real time dataset transmitted to OMC via satellite.
  - A smaller subset of the full recovered dataset.
- Streaming (Cabled, Endurance Arrays)
  - Real time science and engineering data sent to OMS via cable.
  - Nearly complete subset of the full recovered dataset.
- Recovered
  - Full dataset (science & engineering) brought back to shore via the recovery vessel.
- Calibration
  - Dedicated data collected on shore or at sea by manufacturers or Marine Operators to calibrate at-sea sensors.
- Shipboard
  - Environmental data collected by the ships in normal operations.
- Metadata







### **Data Products Produced**


- Level 0 (L0)
  - Raw sensor data acquired by the Marine Operators
- Level 1 (L1)
  - Calibrated data in science units:
    - (a) Derived from L0 data (e.g. Conductivity, Temperature & Depth from a CTD), or
    - (b) Delivered through vendor software (e.g. Glider data)
- Level 2 (L2)
  - Calibrated data in science units derived from multiple L1 products (e.g. Salinity & Density from a CTD)

RUTGERS





### **OOI Data Quality ConOps**





# **Data Quality Assurance & Control**

- Quality Assurance Activities by Marine Operators
  - Factory Calibrations, Burn in, Deployment, Recovery
  - Feedback from Data Management Team
- Automated Quality Control Algorithms
  - Global Range, Local Range, Stuck Sensor, Spike, Gradient, Trend
  - Generate & accumulate automated Quality Control flags
- Quick Look Data Plots
  - Human in the loop flagging (red, yellow, green & events)
  - Routine workflow with standardized GUIs for Data Evaluators
  - Time Series, Profiles, T-S, Multiple Sensors on same platform
- Deep Dive Data Investigations
  - Human in the loop
  - Directed workflow by Data Manager with input from community
  - Recovered vs Telemetered, Comparisons w/ Calibration Data,
    - Vicarious calibration comparisons, Climatologies/Models, etc.







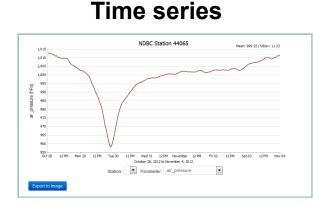
RUTGERS



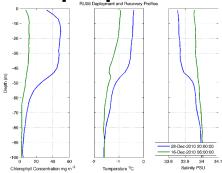
## **User Interface Categories**

- Status User Interface
  - The Status UI will rely-upon engineering, instrument, status log and asset information data that will be made available by the uFrame system.
- Science User Interface
  - Will contain tools to perform basic analysis of the data. Some of the tools are: GIS mapping of marine assets, visualization of time-series data, trend-analysis tools.
- Asset Management User Interface
  - Front-end for the asset management database. Allows users to view and modify the data within the asset management system.
     Also provides APIs to allow scripted updates.
- Command and Control User Interface
  - Front-end for the monitoring of marine assets and infrastructure. Provides capability of sending commands to the OOI cabled infrastructure specific to the Cabled Array needs

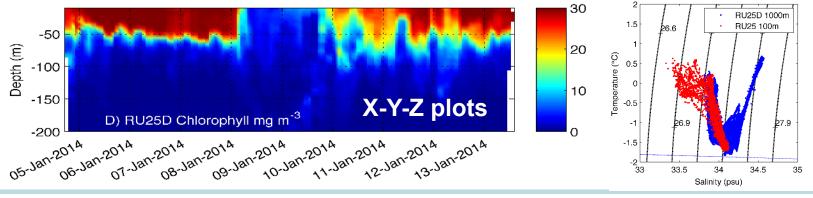







### **Visualization Tools for Data QC**


Close iterative feedback between ASA visualization team and Rutgers data team



### **Depth profiles**



### **Parameter-parameter plots**













### **QC Test Comparisons - ARGO**

| ARGO QC Test                               | OOI QC Test                                             |  |  |
|--------------------------------------------|---------------------------------------------------------|--|--|
| 1. Platform ID*                            | 1. Data is sorted by reference designator so this needs |  |  |
|                                            | to be correct for the data to go into the file          |  |  |
| 2. Impossible date*                        | 2. Time series check in quick look plots. An automated  |  |  |
|                                            | algorithm has been suggested                            |  |  |
| 3. Impossible location*                    | 3. Quick look maps generated for glider/mooring         |  |  |
|                                            | locations to determine close approach times for mobile  |  |  |
|                                            | and fixed assets are already being used for this        |  |  |
| 4. Position on land*                       | 4. Same as 3                                            |  |  |
| 5. Impossible speed*                       | 5. Same as 3. Could be automated                        |  |  |
| 6. Global range test*                      | 6. Already part of automated QC algorithms              |  |  |
| 7. Regional parameter range*               | 7. Already part of automated QC algorithms              |  |  |
| 8. Pressure increasing                     | 8. Less relevant. Profilers move both directions and    |  |  |
|                                            | can be impacted by turbulence or shallow water waves    |  |  |
| 9. Spike test                              | 9. Already part of automated QC algorithms              |  |  |
| 10. Top – bottom spike - obsolete          | 10. Obsolete                                            |  |  |
| 11. Gradient test                          | 11. Already part of automated QC algorithms             |  |  |
| 12. Digit rollover                         | 12. Digital rollover? Not sure what this is             |  |  |
| 13. Stuck value                            | 13. Already part of automated QC algorithms             |  |  |
| 14. Density inversion                      | 14. Plan to implement this as part of automated QC as   |  |  |
|                                            | level 2 products are produced                           |  |  |
| 15. Grey list                              | 15. Not applicable                                      |  |  |
| 16. Gross salinity or temperature drift    | 16. Part of the multi-time scale quick look plot        |  |  |
|                                            | examination                                             |  |  |
| 17. Visual QC – not mandatory in real time | 17. Weekly visual QC is mandatory                       |  |  |
| 18. Frozen profile                         | 18. Part of out of range test or stuck value test       |  |  |
| 19. Pressure not greater than Deepest      | 19. Pressure outliers identified in quick looks         |  |  |
| Pressure = 10%                             |                                                         |  |  |











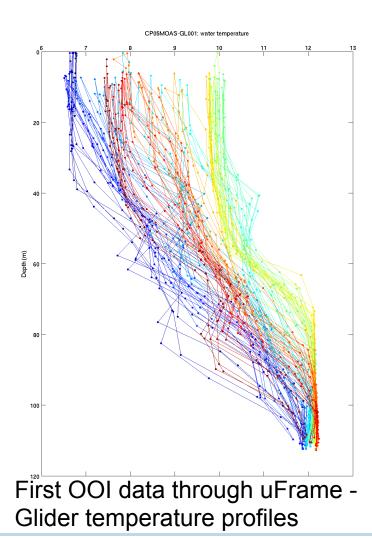


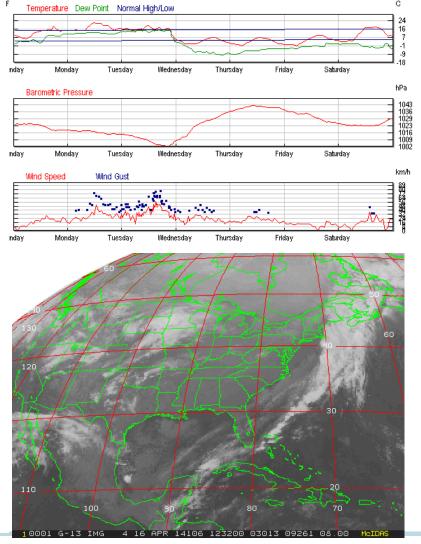


### **Pioneer Array Science**

How exchanges between a broad shelf with the a deep ocean that is bounded by an energetic western boundary system structure physics, chemistry, and biology of continental shelves




- Observing Requirements: Nested simultaneous observations resolving short time scales and multiple spatial scales, data from air-sea interface to sea floor, multidisciplinary sensor suites, realtime data, high resolution adaptive sampling
  - Engineering Drivers:


High turbulence resulting in high frequency heterogeneity in space/ time, high rates of bio-fouling, human presence, rapid response cabailities







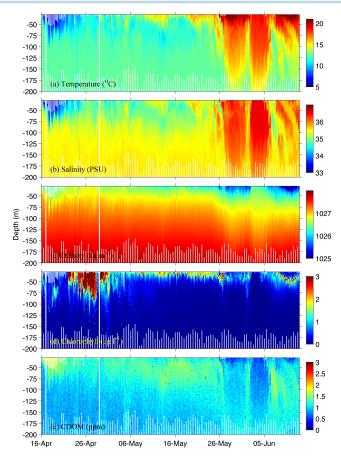




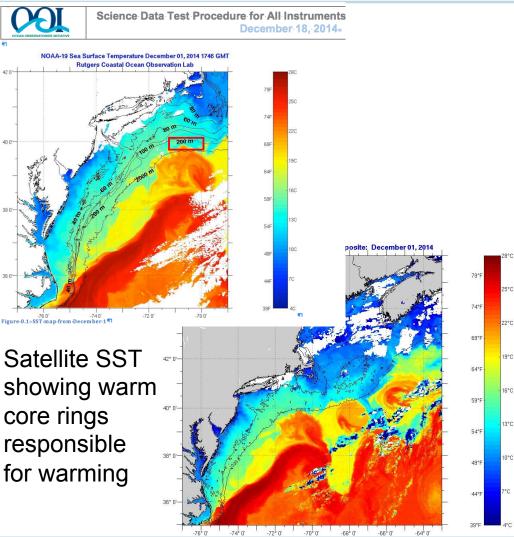
Met data showing storm responsible for surface cooling












# **Comparisons to Other Data Streams**



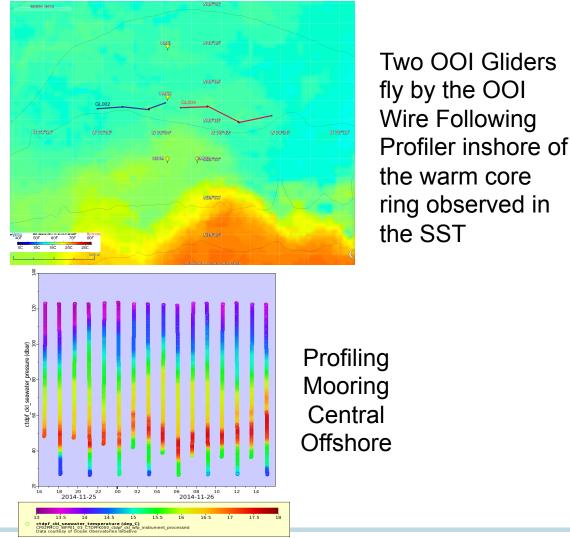
Warm/salty anomalies observed in glider data



RUTGER

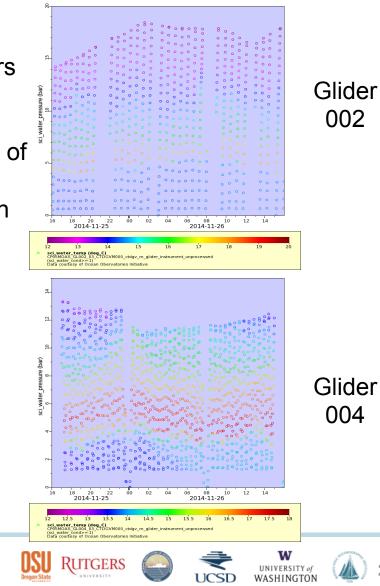
UNIVERSITY of

WASHINGTON


UCSD



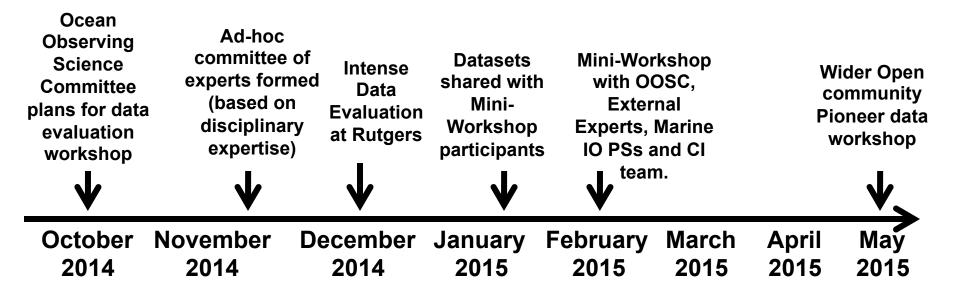



20

### **Vicarious Calibration Opportunities**












### **Data Quality Confidence Building**

- Efforts to engage the external community
- Engender excitement and ownership of OOI data.
- Initial focus on Pioneer Array Mini-workshop
- Expandable to core OOI sensors at other arrays



RUTGERS





### **Pioneer Array Mini-Workshop**

- 1.5 Day Mini-Workshop
- At Rutgers on Feb 12-13
- Overall Goals:

(1) Sensors – Review QC procedures for first 4 sensor systems

(2) User Information – Define mechanisms for outreach to user community

(3) Community Pioneer Data Workshop – Decisions on timing, goals, agenda & constraints







### **Mini-Workshop Feedback Matrix**

 Provide feedback on the matrix of 3 data QC activities being applied to 4 types of sensors deployed on Gliders and Wire Following Profilers at Pioneer

|                             | CTD | ADCP | Ecopuck & PAR | Oxygen |
|-----------------------------|-----|------|---------------|--------|
| Automated<br>Algorithms     |     |      |               |        |
| Quick Look<br>Plots         |     |      |               |        |
| Deep Dive<br>Investigations |     |      |               |        |

 Based on the Pioneer data viewed during the feedback matrix exercise, provide a summary assessment of the data at this stage and recommendations for the future









## **Mini-Workshop Participants**

### OOSC Members:

Larry Atkinson, Emmanuel Boss, Mary Jo Richardson, Steve DiMarco, Rouying He, Suzanne Carbotte, Raphael Kudela & Annette DeSilva

### External Experts:

- (a) Wendell Brown (U Mass) CTDs
- (b) Libe Washburn (UCSB) ADCPs
- (c) Heidi Sosik (WHOI) Puck & PAR (Optical)
- (d) Mark Moline (U Del) Oxygen
- Marine Operator Project Scientists (PS):
  - (a) Al Plueddemann (Pioneer), in person
  - (b) Jack Barth (Endurance), Deb Kelley (Cabled) & Bob Weller (Global), via webex
- Rutgers CI Data Management Team, OL & NSF











## **Future Mini/Community Workshops**

- Targeting 2-3 Community Workshops in 2015.
- February Pioneer Mini-Workshop leads to the Pioneer Community Workshop
- After Pioneer Mini-Workshop, begin work on potential Mini-Workshops with Deb Kelley on Cabled Array, Bob Weller on Global, Jack Barth on Endurance.
- Endurance is a natural extension of the Pioneer & Cabled Array workshops, and will benefit from that experience.
- Global Array has already held a successful Irminger Sea workshop to engender international community involvement.





### **COI**

## **Pioneer Data Evaluation Philosophy**

- Gather a small group of experts to evaluate the scientific quality of a Pioneer data subset that passes through uFrame.
- Generate recommendations in time to help
  prioritize remaining construction & transition.
- Pioneer data subset through uFrame release
  1A of 5 planned releases is the first opportunity.
- Data streams may not be 100% bug-free, just sufficiently bug-free to enable an initial scientific evaluation.





### **Pioneer Data Evaluation Process**

- Quick reminder of Pioneer platform and sensor configurations.
- Introduce existing transition processing and visualization tools.
- Review existing test data that has passed through uFrame release 1A as documented in existing reports.
- Review automated QC Algorithms and coefficient look-up table.
- Generate recommendations for OOI Net Transition Team







### **Pioneer Data Recommendations**

Thursday – develop recommendations for:

- uFrame core data processing algorithms
- GUI display screens to enable internal data evaluation and external scientific use
- Automated QC coefficients in look-up table
- Additional data investigations led by the Data Manager
- Feedback to Marine Operators

Friday – gap fill and prioritize (1,2,3). Submit.







