

Improving Marine Mammal Monitoring Survey on Langseth using Streamer Data

Shima H. Abadi

Postdoctoral Research Scientist, Lamont–Doherty Earth Observatory of Columbia University Visiting Scientist, University of Washington, School of Oceanography

Marcus Langseth Science Oversight Committee, December 2014

ALEUT: Alaska Langseth Experiment to Understand the megaThrust, July 2011 COAST: Cascadia Open-Access Seismic Transects, July 2012

Marine Mammals Monitoring

Visual Monitoring Survey

- 2-5 Observers
- 18.9 m above the water surface

• Acoustic Monitoring Survey (PAM)

- 3 hydrophones (2-200 kHz)
- 1 hydrophone (75 Hz-30 kHz)
- 24 hrs (during periods of darkness or low visibility)

Acoustic Monitoring Survey (Streamer)

- 636 Hydrophones
- Recording for imaging and monitoring at the same time

Baleen Whale Detection (MGL 1110)

Visual Monitoring Survey

• Acoustic Monitoring Survey (PAM)

- Ship noise interference
- PAM cable entanglement with seismic equipment
- Shallow water depth
- Low frequency calls

• Acoustic Monitoring Survey (Streamer)

- Silent animals
- Animals were very far => full Airgun array was used
- High frequency calls

NO DETECTION

Humpback Whale 📒

North Pacific Right Whale

Localization Technique & Result

Localization

* Abadi, Wilcock, Tolstoy, Crone, Carbotte: "Sound source localization using data recorded by hydrophone streamers during seismic surveys", J. Acoust. Soc. Am., submitted.

Airgun Localization

Recorded time	Shot #	Water Depth (m)	Estimated Location (m)	Actual Location (m)
July 16, 2012				
17:59:47	12395	126	(-100±1000, 100±400)	(-33 <i>,</i> 238)
18:05:54	12410	129	(-270±820, 280±580)	(-24 <i>,</i> 241)
18:11:56	12425	120	(-320±550 <i>,</i> 210±580)	(-31 <i>,</i> 243)
18:16:01	12435	117	(150±1000, -100±950)	(-29 <i>,</i> 240)
18:20:05	12445	124	(-150±700 <i>,</i> 550±850)	(-31, 242)

Humpback Whale

* Thompson, Cummings, Ha (1986), "Sounds, source levels, and associated behavior of humpback whales, Southeast Alaska", JASA 80(3)

Humpback Whale

Unidentified Whale

Unidentified Whale

Fin Whale

Fin Whale

Species	# of Visual Detection	Date	Time
Fin	2	July 23	15:43:00-17:24:00
NPRW	1	July 23	17:24:00-18:44:00

Conclusions

- The streamer data can <u>verify</u> the accuracy of visual detections.
- This technique helps address environmental concerns about visual detection limitations.
- This offers a significant improvement on PAM capabilities at lower cost.

Future Work

Short Term:

- Improve the localization technique (reviewers' comments and suggestions)
- One more publication on whale localization (effectiveness of the mitigation process)

Long Term:

- Parameter study (SNR, straight streamer, deep water, ...)
- Explore the possibility of using this technique on *Langseth* in near real time

Thank you

Questions?

Localization

Fin Whale

Fin Whale

Species	# of Visual Detection	Date	Time
Unidentified	6	July 27	15:50:25-16:15:38

Localization Uncertainty

It is used for earthquake studies

$$R_{t,1-\alpha}^{2}(x_{s}, y_{s}) = \min[R_{t}^{2}(x_{s}, y_{s})] + \frac{p-1}{M}s^{2}F(p-1, Q, 1-\alpha)$$

F: value of F-distribution

p: number of free parameters (here *p*=3: origin time and two horizontal coordinates) *Q*: $Q = \sum_{i=1}^{E} M_i - p$

(E: number of events, m_i : number of sub-arrays used in the *i*th source localization event)

1- α : confidence level

s: arrival time uncertainty

$$s^{2} = \frac{\sum_{i=1}^{E} \frac{M_{i}^{2}}{M_{i} - p} \min[R_{i,i}^{2}(x_{s}, y_{s})]}{Q}$$

($R_{t,i}(x_s, y_s)$: residual of sub-arrays for the *i*th source localization event)

Source & Volume	Water Depth (m)	Predicted RMS Distances (m)			
		190 dB (Pinnipeds)	180 dB (Cetaceans)	160 dB (Level-B Harassment Radius)	
Single Airgun (40 in ³)	>1000	12	40	385	
	100-1000	18	60	578	
	<100	150	296	1050	
4 Strings 36 Airgun Source (6,600 in ³)	>1000	460	1100	4400	
	100-1000	615	1810	13395	
	<100	770	2520	23470	

* Tolstoy, Diebold, Webb, Bohnenstiehl, Chapp, Holmes, Rawson (2004), "Broadband calibration of R//V Ewing seismic sources", Geophys. Res. Lett., Vol. 31, L14310

Beamforming-1

