

NOAA Unmanned Aircraft Systems (UAS) Program Activities

Robbie Hood
Director, NOAA UAS Program

4 June 2014

NOAA UAS Program Strategic Vision and Goals

Vision

 UAS will revolutionize NOAA observing strategies comparable to the introduction of satellite and radar assets decades earlier

Goals

- Goal 1: Increase UAS observing capacity
- Goal 2: Develop high science-return UAS missions
 - · High impact weather monitoring,
 - Polar monitoring
 - Marine monitoring
- Goal 3: Transition cost-effective, operationally feasible UAS solutions into routine operations

Program Progress

Conducted UAS market survey and developed data base of UAS performance capabilities and costs

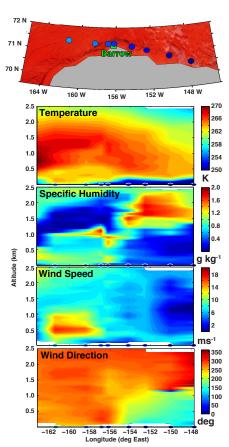
Developed UAS Analysis of Alternatives:

- High altitude long endurance Global Hawk
- Medium altitude long endurance Predator or Ikhana
- Low altitude long endurance ScanEagle
- Low altitude short endurance Puma or Vertical Take Off and Landing (VTOL)

Developed technology review process for funded projects

Supported operator training and initial concept of operations

High Impact Weather Monitoring


Key Accomplishments

- Observations of oceanic weather systems in Atlantic, Arctic, and Pacific using NASA Global Hawk
- Development of Global Hawk dropsonde system with NSF
- Lower Mississippi River Forecast Center demonstration with Puma and
- Aircraft-launched UAS development through SBIR Phase I
- Development of Fire Weather UAS through NSF collaboration
- Development of EMILY unmanned surface marine vehicle
- Two peer-reviewed journal articles published in 2014

Sensing Hazards Using Operational Unmanned Technology (SHOUT)

Overall Goal

 Demonstrate and test prototype UAS concept of operations that could be used to mitigate the risk of diminished high impact weather forecasts and warnings in the case of polar-orbiting satellite observing gaps

Objective 1

- Conduct data impact studies
 - Observing System Experiments (OSE) using data from UAS field missions
 - Observing System Simulation Experiments (OSSE) using simulated UAS data

Objective 2

 Evaluate cost and operational benefit through detailed analysis of lifecycle operational costs and constraints

SHOUT General Plan

FY14

- OSE with previous HS3 data underway
- OSSE with simulated data starting soon for Atlantic / Gulf of Mexico tropical cyclones and Pacific / Arctic weather systems
- 5 extra missions added to HS3
- NOAA aviation personnel supporting NASA and NOAA Global Hawk missions

FY15

- Continued OSE and OSSE studies
- 10 16 NOAA-dedicated Global Hawk missions
- NOAA aviation personnel supporting NASA and NOAA Global Hawk missions

FY16

- NOAA-dedicated Global Hawk missions and possible partnership with NASA Earth Venture experiment
- NOAA aviation personnel supporting NASA and NOAA Global Hawk missions
- Finalize data impact studies and analysis of cost and operational benefits

Polar Monitoring

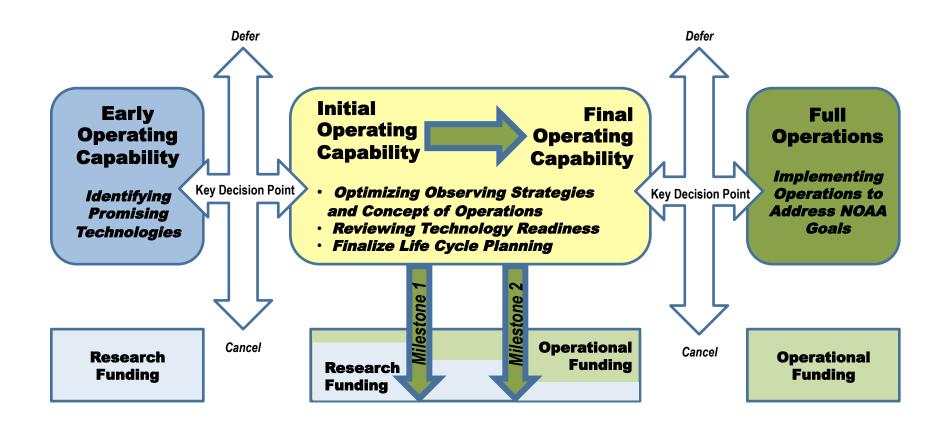
Key Accomplishments

- Peer-reviewed journal article based on black carbon mission using Manta in Norway
- Deployment of three different UAS during Marginal Ice Zone Experiment in partnership with NASA
- Puma UAS deployed from US Coast Guard Healy Ice Cutter ship for marine awareness and oil spill detection
- Development of partnership with Conoco Philips for ScanEagle flights in the Arctic

Marine Monitoring

Key Accomplishments

- Acquisition and deployment of two Puma UAS
- Two years of Puma missions in partnership with National Marine Sanctuaries Program
- Development of Puma Transition Plan in collaboration with OMAO and NOS
- Demonstration of NASA Ikhana and observing capabilities for long distance monitoring of Hawaiian marine monument
- Development of medium altitude UAS
 observing capabilities for gravity
 measurements and coastal mapping through
 SBIR Phase II study



UAS Transition Process

Contact Information

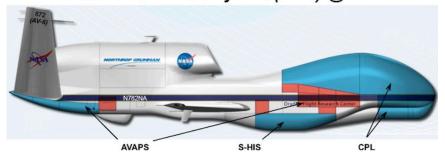
UAS Web Site: http://uas.noaa.gov/

Questions should be directed to:

Robbie Hood - NOAA UAS Program Director (robbie.hood@noaa.gov / 303-905-3411)

Philip Hall, CAPT/NOAA 301-713-7611 philip.g.hall@noaa.gov

Backup Slides



Example of Weather Observations Being Collected During NASA Hurricane Severe Storm

Sentinel (HS3) Experiment

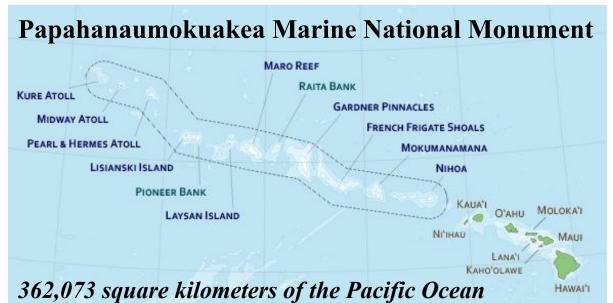
HS3 Environmental Payload (AV-6) @ WFF '12

Environment Observations

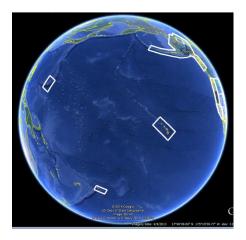
- Profiles of temperature, humidity, wind, and pressure
- Cloud top height
- Cloud top temperature and profiles of temperature and humidity

HS3 Over-Storm Payload (AV-1) @ WFF '12

Over-storm Observations


- Doppler velocity, horizontal winds, and ocean surface winds
- Profiles of temperature and humidity and total precipitable water
- Ocean surface winds and rain

Hawaii Actitivies



GRAV-D Benefits From SBIR Program

- Vast areas remain to be surveyed in remote regions that are difficult to access
 - Aleutians, Pacific Islands
- Survey blocks are outside the range of our usual aircraft (King Air) and would require very expensive P-3 survey
 - Likely at least 50% cheaper with UAS
 - UAS much safer operation
- SBIR program hastens our move to the superior TAGS System 6 sensor
 - Relatively impervious to turbulence
 - Aurora will engineer this instrument onto their aircraft: we can use this effort to assist us in getting FAA/NAVAIR certification for this sensor

