

Ship/Shore Communications Subcommittee UNOLS Council Meeting

12 March 2014

Goal Statement

- "The goal of the ship/shore communications subcommittee is to help the federal funding agencies develop a viable plan for the US Academic fleet's ship/shore communications that will help the ships meet the growing demands of internet connectivity for general communications and telepresence."
 - Define/quantify day to day bandwidth needs
 - Give guidance on infrastructure and models for telepresence
 - Create ideas/plans on how to meet the above

Ship/Shore Communications **Subcommittee** •12 members • 2 Meetings: • RVTEC – College Station, TX – 21Nov13 • NSF – 16 Jan 14 Report of findings and recommendations

Report

Current Systems/Background
Future Day to Day Requirements
Telepresence
Bandwidth Management
Upcoming Technology
Recommendations

Current Systems/Background

HiSeasNet (HSN)/C & Ku-Band

• In place since 2002

• "Use it or Lose it"

Pros	Cons
Global Coverage (C- band)	Antennas are large and complicated
Room for Expansion	Not enough bandwidth
Cost/MB	Infrastructure is older
	Ships go out of HSN footprint

~4TB sent through HSN in 2013

Current Systems/Background Fleet BroadBand (FBB)/L-band

- In place since 2009
- Pay per MB sent

Pros	Cons
Global Coverage	Limited bandwidth
Smaller, more	Cost
robust antenna	
Reliability	

~1.2TB sent through FBB in 2013

Day to Day Requirements

- Internet at sea
 - Science Operational Support
 - Ship Operational Support
 - Data to ship
 - Data from ship
 - Ship email
 - Access to shore/web email
 - Morale
 - Non-cruise related science business
- Telemedicine
- Voice

- Science Operational
- Ship Operational
- Safety
- Morale
- Video -streaming
- Video-conferencing
- Desktop-sharing (eg Webex, Go To meeting)
 - Telepresence
 - VPN

Day to Day Requirements (cont.) • Flexibility • Separate systems Auditing capabilities **Scalability** • Security • Reliability Shore to Ship Ship to Shore C-Band 512 Kbps 256 Kbps 256 Kbps Ku-256 Kbps Band 4X the current bandwidth!

Telepresence

• Requests are on the rise

Level	Туре	Bandwidth		Example
		Ship to Shore	Shore to Ship	
1	Public Viewing	1.5-2 Mbps	512 Kbps	Streaming standard definition video to the internet.
2	Remote Learning/ Media Events/ Outreach	1.5-2 Mbps	1024 Kbps	Streaming standard definition video to the internet with direct interaction (2-way audio/video) with a school, other venue or media via two-way audio.
3	Telepresence- Enabled Science	6.0-20 Mbps	1.5 Mbps	Streaming at least one channel of high definition video to shore with bi-lateral audio support to shore based scientists working daily with ship-based scientists on a cruise.

Bandwidth Management • Concern that "bigger pipe" will simply become clogged again. • Various "systems" within the fleet • Difficult to create a one-size fits all policy • Will collect user-level data for 1year • Draft a plan at the next **RVTEC** meeting

Upcoming Technology

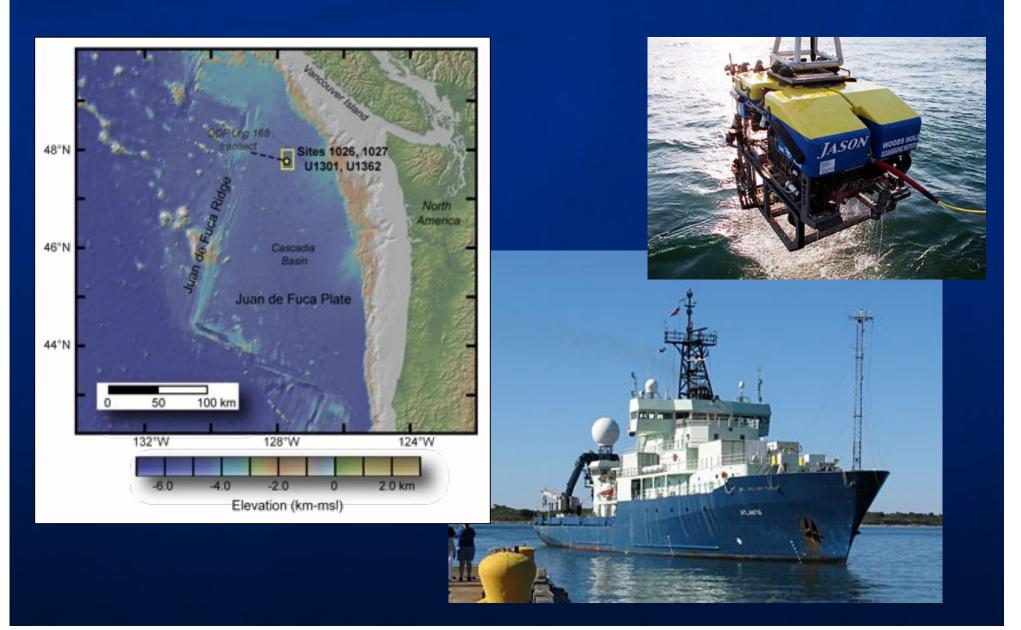
- C & Ku-Band
 - More efficient, less expensive modems
 - Dual band antennas

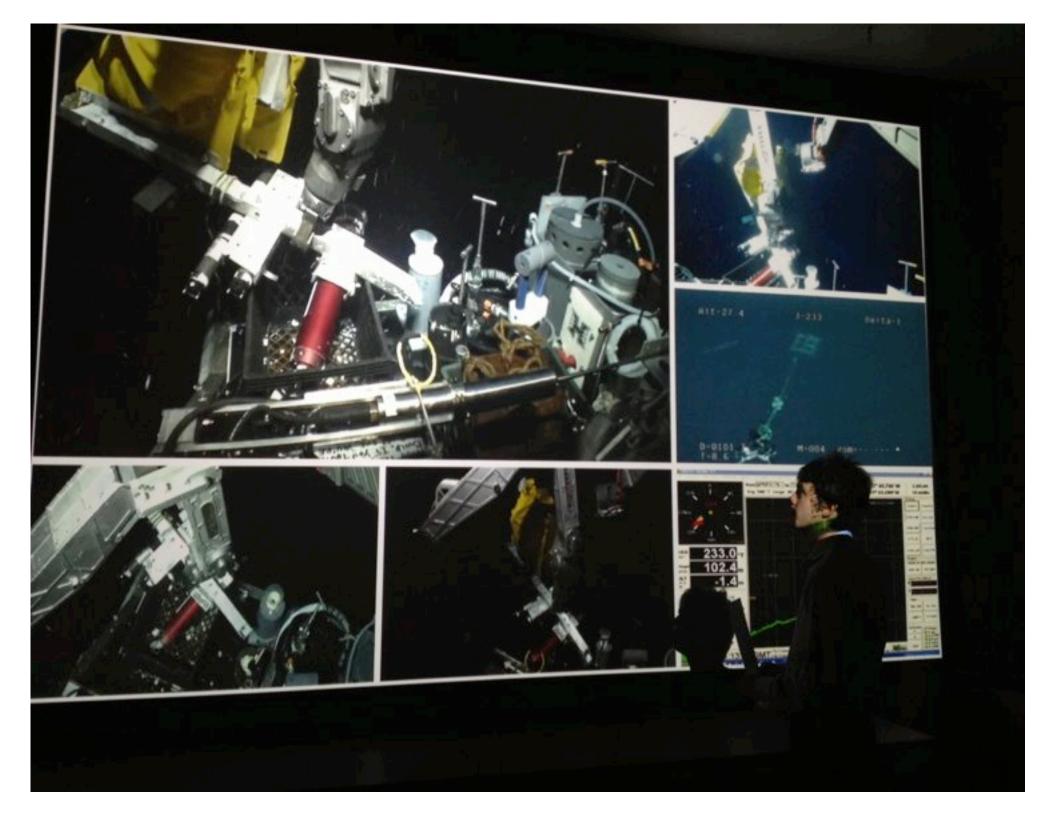
• Ka-Band & INMARSAT Global Express (GX)

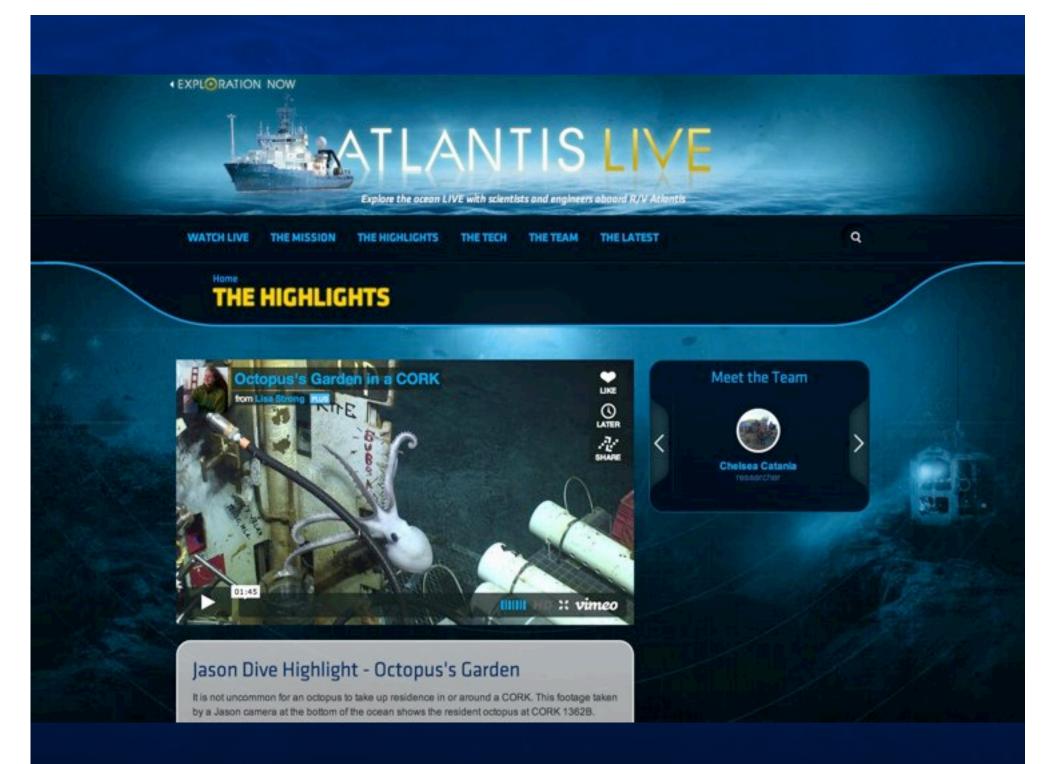
- Ka-Band is large spectrum with incredible capability
- Global spot-beam coverage
- GX combines L-Band with Ka-band
- Pros & Cons
- GX to be fully operational by Q2 2015

Recommendations Three-Year Plan

Overall:


- Keep current system of HSN as primary & FBB back-up
- Increase HSN bandwidth by 4x & improve infrastructure
- Thoroughly test GX as it starts coming online
- Monitor bandwidth and create a Management Plan
- Move ships toward Level 3 telepresence capability as need and budget allow
- Meet annually at RVTEC
- Review after 3 years


Ship-to-Shore Telepresence


National Deep Submergence Facility

Oceanography VOL 27. NO. 1. SUPPLEMENT | MARCH 2014

New Frontiers in Ocean Exploration

The E/V Nautilus 2013 Gulf of Mexico and Caribbean Field Season

> GUEST EDITORS | KATHERINE L.C. BELL. MICHAEL L. BRENNAN, AND NICOLE A. RAINEAULT

EXPANDING THE TELEPRESENCE PARADIGM

Live Interactive Programming from R/V Atlantis and ROV Jason

By Dwight F. Coleman, Dean Livelybrooks, Sharan Katz Cooper, Gregory Mulder, Andrew T. Faher, Anne M. Tréhu, and Douglas R. Toorney

Since 1981, Robert Ballard has envisioned a concept of ocean exploration with multiple ships collecting video and data from the depths of the world ocean and broadcasting discoveries in eval time through ship-ta-shore satellite technology. In 1989, the telepresence vision was realized when the first Jason Project broadcasts employed ROV technology developed by the Deep Sahmergence Laboratory at Woods Hole Oceanographic Institution (WHOI). Those early telepresence-enabled broadcasts delivered live educational programming to vast andiences who could participate in the exploration as it was happening.

The vision expanded in 2003 when the Institute for Exploration developed a new suite of ROV and telepresence technologies as part of a portable system that was installed on ships of opportanity. In 2007, those expeditions began to feature live broadcasts 24 hours a day to audiences on the Internet and at venues such as Mystic Aquarians, all made possible through a prototype version of the Inner Space Center (ISC) at URI GSO. Since 2009, the telepresence paradigm has grown substantially with the development of IL/V Nauthar, introduction of the NOAA Ship Okuanes Explorer, and construction of the NOAA Ship Okuanes Explorer, and construction of the premanent ISC. Live broadcasting can now originate from two ships of

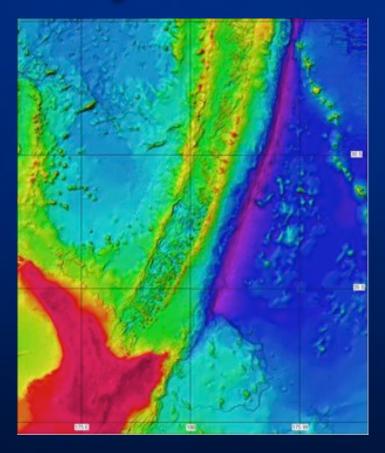
Figure 1 (alone), ROV (asses, part of the UNOX5 National Deep Submargence Facility spectra by Woods Hule Oceanographic institution, Mean credit: Tam Balmer, Woods Hule Oceanographic Institution

exploration that have dedicated ROV and telepresence systems installed on board and that conduct field work up to six months each year.

Beginning in 2013, the telepresence-enabled exploration paradigm expanded yet again to involve more ships, including the Schmidt Ocnan Institute's R/V Fulkov, the University of Washington operated R/V Thomas G. Thompson, and the WHOI operated R/V Atlantis (the latter two ships are part

of the University-National Oceanographic Laboratory System [UNOLS]). Many more live feeds could now be received and distributed through the USC and used for live video production associated with the Exploration New program (see page 22). We report here on two specific telepresence enabled projects conducted during the summer of 2013 on board R/V Atlantis that used the Jacon ROV system (Figure 1). This project represents a milestone in the development and use of telepresence technology for UNOLS platforms, leading to even groater expansion of the telepresence vision for the academic research field, with several new ships slated to come on line in the near future.

<u>Challenges</u>


- Need for more technical support satellite operations, network engineering, telepresence systems, production logistics, shore
- Funding can't rely on supplemental funding need to plan for and budget for telepresence activities through the proposal process

<u>Successes</u>

- Outreach lots of interest in the scientific activities, conducted more than 100 live interactions with various audiences
- > Data transfers to shore for remote science collaboration
- Bonus supported Chris Reddy's shore-based participation during Dave Valentine's cruise in October
- Leading to more telepresence-enabled cruise opportunities

Tim Shank's project:

Kermadec Trench, April 10 to May 20, 2014

R/V Thompson

EX1402 Leg 3 Overview Map

St Petersburg.

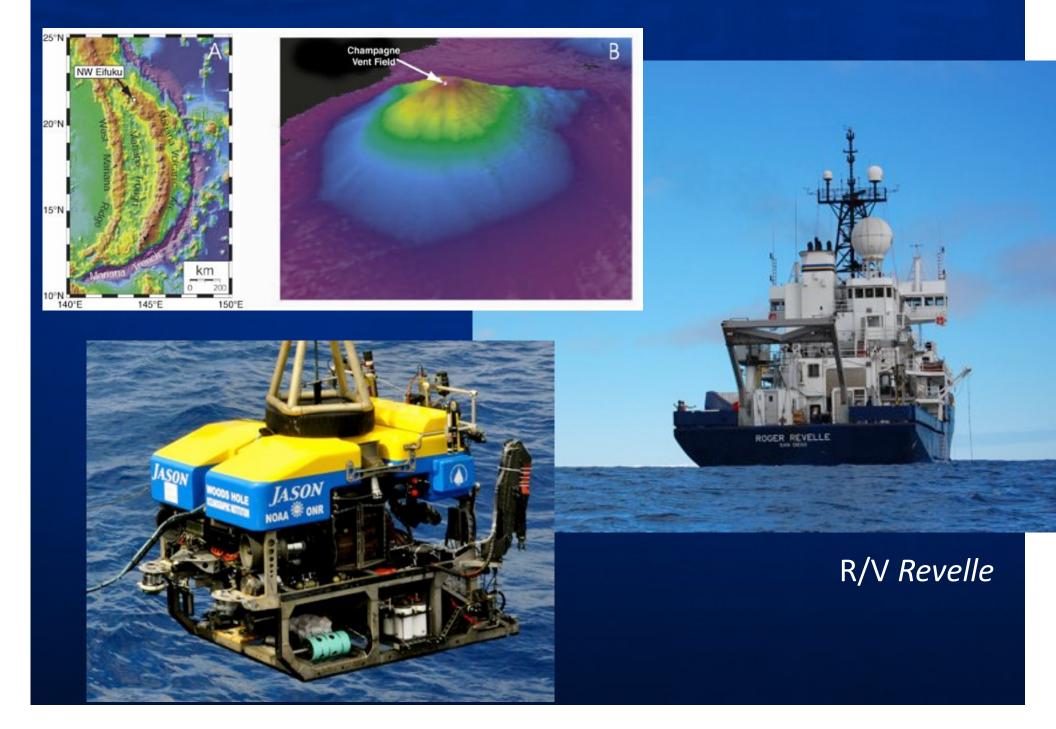
Google earth

285 km

Data SID. NOAA, U.S. Navy_NGA, GEBCO,

Image Landsat

NAUTILUS EXPLORATION PROGRAM



NSF INSPIRE OCE1344250

TREET: Transforming Remotely-conducted Research through Ethnography, Education, & Rapidly-evolving Technologies

Craig Moyer and Bill Chadwick's project, Nov-Dec, 2014:

R/V Sikuliaq

Future RCRV(s)

R/V Neil Armstrong and R/V Sally Ride

THE UNIVERSITY OF RHODE ISLAND

GRADUATE SCHOOL OF OCEANOGRAPHY

R/V Endeavor

