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Costa Rica 3D Survey
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R/V Langseth

9°N

goseNn 4 6-km streamers
150 m streamer spacing
3200 in2 dual source array
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Time vs Depth Migration

Post-stack time migration




Overview of the Costa Rica 3D
seismic volume
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What controls slip on the plate interface?
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Plate-boundary thrust reflection amplitude
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Plate-boundary reflection amplitude and seismicity

What controls the fluid
; content along the
- EY plate-boundary thrust?

Isotherms from
Harris et al. 2010

Microseismicity from
Arroyo et al. 2013
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Plate-boundary thrust reflection amplitude
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Plate-boundary thrust reflection amplitude
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Margin wedge structure in 3D
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Margin wedge thrusts cutting through
entire overriding plate
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Depth (km)

Fault-plane reflections margin wedge
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Upper slope margin wedge faults
Thrust faults offsetting normal faults
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the margin wedge
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Fluid migration through the margin wedge




Significant results so far.......

* Margin wedge is made up of sequences
of layered clastic material that is currently
undergoing shortening by folding and

thrusting. 9°30° N

e  Fluid migration through the margin wedge
plays a critical role in fluid loss from the
plate interface by controlling drainage or
as a source of fluids.

* Fluids along the plate interface are
significant for controlling fault slip behavior.
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Conclusions

Strong coincidental relationship between plate boundary reflectivity
and seismicity implies a role of fluids in non-accretionary/erosional
margins as in accretionary margins.

Fluid sources from subducted sediment is small (especially in
comparison to accretionary margins) implying either other fluid
sources or very slow drainage.

Plumbing system plays a significant role in the drainage of the plate
interface as major throughgoing thrust/high-angle reverse faults
stratigraphy? provide connections directly through the margin
wedge and shallower extensional normal faults provide pathways
through the slope cover.

Significant amplitude changes coincide with significant deep
structures that either act to change plumbing system rather than a
contrast in fault material properties.
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Margin Structure to show where we
will be looking

Shelf break
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Overview of the Costa Rica 3D
seismic volume

Shelf break
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Top of margin




In wedge In 3D

Top of marg




Slope cover




Note: Numerous fault syst
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Note: Numerous fault syst

Faults In the slope cover

Seismic Coherence of slope cover projected on top of margin wedage




Note: Numerous fault sys
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Connections to plate interface along layering
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Layering within margin wedge
Faults and folds within margin wedge
Addition/removal of material forming ridges within margin wedge




Deeper example of “underplating”
Continuity of margin wedge layers and connectivity with plate interface




Continuity of layers into plate boundary
Thrust fault?




Continuity of layers into plate boundary
Thrust fault?




Mystery structure




Key observations of Margin Wedge Structure

e Layering (potential fluid migration pathways)
e Shortening along thrust faults (additional fluid migration pathways)
e Discordant structures forming along the base causing uplift or subsidence

* Extensive network of normal faults in slope cover (conducive to fluid
migration)




Fluids

e Sources
e Migration pathways



Downdip
Sediment Thicker within graben, but less than ~ 250 m
Amplitude lower in graben
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Vent system?
Deep connectivity?




Vent systems enlarged
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Deep connectivity
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RMS amplitude with slope cover
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Vent/pockmark locations relative to
slope cover RMS amplitude







INn the slope cover

Fault patterns




Deformation front (fluid sources)
0 — 250 m of underthrust sediment
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Plate-boundary thrust reflection amplitude

High amplitudes along basement ridges




Faults In the slope cover
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Margin wedge Is focus
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Plate-boundary reflection amplitude and seismicity

9°30’N

What controls the fluid
content along the
N plate-boundary thrust?

Isotherms from
Harris et al. 2010

Microseismicity from
Arroyo et al. 2013
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