AUTOMATIC ANNOTATION METHODS FOR CORAL REEF SURVEYS

OSCAR BEIJBOM, UCSD

DESSC meeting San Francisco, Dec 8 2013

Evolution of coral reef surveys

Time / information quantum

field time

In situ counting

Typical reef surveys

4

Porites

Rock / CCA

Macro Algae

Sand

Porites

- Collect images
- □ Annotate image
 - Scatter random points
 - Assign labels
 - Calculate coverage
 - 50% Porites
 - 16.7% Sand

Calculate reef coverage

Automated annotation

- Automated annotation method¹
 - Color and texture descriptors.
 - Multiple scale around location of interest
 - Learns from previously annotated data
 - Runtimes: 30 second per image at test time.
- ~80% accuracy compared to a single expert.
- How good is good enough?
 - What level of accuracy can be expected?
 - How well does the method generalize?

[1] "Automated Annotation of Coral Reef Survey Images", Beijbom et. al., CVPR, 2012

2008, 2009 ⇒ 2010 (83.1%)											
CCA	.89	.04	.01	.04					.02	95701	
Turf	.40	.46	.01	.03		.03			.06	4759	
Macro	.69	.05	.19	.02		.01	.02		.02	3285	
Sand	.15	.01		.83					.01	11491	
Acrop	.13	.14	.01		.62				.10	182	
Pavon	.25	.06	.01	.03		.60	.01		.04	1586	
Monti	.41	.03	.01	.07			.42		.05	2118	
Pocill	.34	.03				.01		.60	.02	838	
Porit	.20	.02		.01					.76	9967	
CCA TURE Macropavoponii Ocili Orit											
			·	<u> </u>	۱ <u> </u>	<i>,</i> 0			•	J	
	OTHER										

The Inter Operator Study

Machine operation modes

ALLEVIATE

- Machine abstain on difficult decisions.
- These decisions are deferred to human expert.

ABUNDANCE

- Machine errors can be characterized on the training data
- Use this to achieve unbiased estimates of abundances¹.

[1] "Estimating the taxonomic composition of a sample when individuals are classified with error". Andrew Solow, Cabell Davis and Qiao Hu. MEPS 2001

Yellow dot indicates that H_0 "means are equal" can not be rejected at 99% level.

What is next?

Moorea Coral Reef NSF Long Term Ecological Research

What is next?

What is next?

Descriptors and learning method are generic. Sampling method and abundance correction generic. The sky ocean floor is the limit!

Coauthors and collaborators:

David Kriegman	UC, San Diego
Serge Belongie	UC, San Diego
Tali Treibitz	SIO
Greg Mitchell	SIO
Davey Kline	SIO
Pete Edmunds	Calstate Northridge
Ben Neal	UQ

Support primarily from:

NSF Computer Vision Coral Ecology grant #ATM-0941760.

Oscar Beijbom:

obeijbom@ucsd.edu http://vision.ucsd.edu/~beijbom/website/

Coralnet.ucsd.edu:

Automated annotation in the web browser. Publicly available. Check it out!

¹⁶ Bonus Material

Automated annotation

Moorea Coral Reef LTER

Coral coverage estimation.

Accurate prediction within, and across, years: (80%) Accurate estimation of coverage: Slope = .94, Corr. coeff. = .96

How good is good (enough)?

- □ 80% accuracy compared to a single expert.
- On one pacific reef location.
- What level of accuracy can be expected?
- How well does the method generalize?

Accuracy overview

