

Jason Upgrades
Personnel

- User feedback very positive regarding new EL Akel Sterling (long time former nav contractor)
- Jason ops team continues to cross train to build flexibility for every position
- Integrating several new WHOI technical staff into Jason Ops
- Utilized several *Alvin* team members in 2013 and we are continuing to cross train *Alvin* & *Jason* for 2014

Jason Upgrades Manipulators

- In response to ongoing issues with manipulator reliability, addition of a Titan 4, 7-function, position-controlled manipulator in March 2014
- Provides option of two Titan 4 or one force-reflecting Kraft Predator and one Titan 4
- Titan 4 specs:
 - Titanium construction to eliminate corrosion
 - Weight in water: 78 kg (172 lb)
 - Lift at full extension: 122 kg (269 lb)
 - Maximum lift, nominal: 454 kg (1,000 lb)
 - Standard gripper opening: 99 mm (3.9 in)
 - 4-finger intermeshing option
 - Grip force, nominal: 4,092 N (920 lbf)
 - Wrist torque, nominal: 170Nm (126 ftlb)
 - Integrated Wrist Camera
 - Image sensor: 1/3 color Super HAD CCD
 - Horizontal resolution: 480 TV lines minimum
 - Illumination: 0.3 lux at F2.0

Jason Upgrades **Other**

Elevators

As a result of implosions of glass flotation, upgrades include:

- Syntactic foam
- Increased payload
- Redesigned base/release to increase reliability and use USBL
- Easier assembly during mobilization

New science sampling equipment built

•Two new major samplers

•Smaller, multi-chamber slurp to reduce air weight and offer other payload options for users

Navigation

•USBL upgraded to new Sonardyne beacons to save weight also integrated into elevators

•Purchased new test equipment for easier prep and troubleshooting

Purchased new monitors for control van upgrade

Upgrades to the Jason web pages

•www.whoi.edu/ndsfVehicles/Jason

Data and Imagery Recording

Jason Upgrades

Single-channel NDSF design successfully prototyped this summer

- Control is well integrated with *Jason* workflows and behavior, as is metadata capture
- Display of video and metadata is supported by common video playback standards
- Video quality is high (Blu-ray) while file volumes are about 10% of commercial recorders
- Purchased components for a 3-channel system and will continue development and testing with transition completed in 2014

Jason Upgrades Active Heave Comp Winch

- Rapp Inc. winch is complete
- Three cruises scheduled in 2014: Chadwell, Toomey on the TGT in June-July; Butterfield on the Brown in August
- All electric
- Provides motion compensation
- Heavyweight instrument deployments and recoveries now possible
- Weather window improved for difficult operations
- Better control and alarms

Jason Upgrades Active Heave Comp Winch

Problems Encountered and Resolved

Motor encoder had insufficient resolution to provide the style of control required

- Drive could not determine rotor position @ low speed creating mismatch in the driving magnetic field resulting in a runaway condition
- The fix for this problem was twofold:
 - Parameters in control algorithm shifted to not ignore position encoder under any circumstances
 - Encoder changed to one with greater resolution (2X)

Additionally

- Control program modified to automatically shift to encoder on one of the other motors in turn if the primary encoder fails. There are three drive motors, each with an encoder.
- Automatically activate emergency stop if winch rotates without appropriate command
- Cable attenuation due to compressive loads results in FO attenuation and will prevent use of this arrangement for dives 4,000 m and deeper
- SIO portable traction winch will be used at North Pond (4,500m) on the Merian
- Alternate cable options to allow use of this winch beyond 4000m being researched

Sentry Upgrades
Personnel

- Now two deep fully trained in every position. Working on 3rd level backups and cross training
- Sean Kelley
 - Regularly does pre- and post-dive checks
 - Starting on mission planning
 - Expected to become EL in Sep 2014
- New software engineer (Johanna Hansen) Jan 2014
- New electrical contractor Jan 2014
- New occasional mechanical tech, including cruises

Sentry Upgrades
Sonar Systems

- Reson AUV3 dual freq, 1/3 power, 15 lbs lighter
 - New WHOI driver means full reconfigure and start up in water saves power and increases flexibility
- Blueview P900 forward looking obstacle avoidance and science uses – no cost to NDSF
- Edgetech 2205 dynamic focus sidescan (8 cm beam width) no cost to NDSF

Sentry Upgrades User Interfaces

- NavG interface
 - More situational awareness for operators
 - Science interface mode, including predicted dive durations, etc.
- Sentry Sitter upgrades
 - Integrated GUI tool during dive and on deck
 - Enables most tasks without software expert

Sentry Upgrades Computing & Mob/Demob

- New server racks, workspace, storage
 - Mob still takes only two days with substantial added capability
 - Reduces errors and mistakes
- New computing
 - Massively parallel and high capacity for new camera and water column sensors
 - Much faster and redundant
- New vehicle computer
 - Replaces c2006 model, more capable

Sentry Upgrades Battery System & Data Pod

- Three hour turnaround with 20-48 hour dives
- Datapod complete and in use
- Battery upgrade underway
 - 2013 50% design
 - 2014 design, build
 - 2015 install at first overhaul

Sentry Upgrades New Thruster

- ~20% improvement in efficiency \rightarrow longer dives
- Should give 3 kt sprint capability
- Planned integration 2Q2014
 - Preliminary design and prototype 2012
 - On hold after successful deep use of current thruster
 - Used by PROV in 2013, including extensive testing
 - Redesigned and new prototype for lighter weight system now complete and under test

- Joint ops with Jason currently require the ROV to leave the bottom for ~45 min during each launch and recovery
- Fly away descent
 - Can now launch Sentry without interrupting Jason bottom activities
 - Tested successfully
- Automated surface drive
 - Will allow recovery of Sentry without interrupting Jason activities
 - Ready as soon as AIS is online
- AIS (locator beacon) shows up on ship radar, greater range than RDF
 - Under construction, installation expected Jan 2014

Sentry Upgrades
Anchoring

- Small, variable buoyancy device
- Multi-stage drop weight
- Lab experiments and 20% design complete 2013
- Projected installation in late 2014

Sentry Upgrades
Documentation

- Scientists Guide to Sentry Cruise Planning" on website
- Major upgrades to Sentry website ~50% of envisioned content now live
- All drawings now fully up to date in modern cad packages
- Revision control system almost fully implemented

Main Sentry Page: http://www.whoi.edu/main/sentry

Planning Guide: http://www.whoi.edu/fileserver.do? id=159424&pt=10&p=39047

Acoustic Tethering: Blessing and a Curse

Woods Hole Oceanographic Institution

2013-Dec-08 27

Pilot Demonstration, Buzzards Bay

Woods Hole Oceanographic Institution

Enabled Concepts

Off-site Geo-referenced descent

Unconstrained parallel multi-vehicle operations

Off-site dive-time data, retasking and monitoring

Woods Hole Oceanographic Institution

2013-Dec-08