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Background - Air-sea interaction measurements from Unmanned OCEANOGRAPHY

Aerial Vehicles (UAV)

» Coupling of atmospheric and oceanic boundary layers plays important role in local and global
fluxes of mass, momentum, and energy

« Air-sea fluxes are poorly understood, especially in high wind and wave environments (e.g.,
high latitude, extreme conditions, remote locations)

« Aircraft provide an efficient way to measure small to
mesoscale processes over large spatial ranges

» To measure these surface processes, need to be

NSF/NCAR C130 - close to the surface (<30 m)
(2004 GO_TEX) o —l  Transition to smaller, lighter, safer platforms, that
I(‘2'%gt7TXV')n aircraft can deployed from research vessels: Unmanned
Aerial Vehicles (UAVSs)

ScanEagle “ -
(2012 -)
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Boeing-Insitu ScanEagle UAV OCEANOGRAPHY
« 2 — 3 kg payload, >11 hrs endurance SkyHook recovery system

* Pneumatic launch, vertical line recovery
» Capable of ship-launch and recovery

Wingtip hook
mechanism
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Flight configuration: “stacked” UAV OCEANOGRAPHY
ScanEagle
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SIO ScanEagle UAS for air-sea interaction research
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"Flux" payload

UC San Diego

Instrumentation

Measurement =

Krypton

9-port turbulence/gust probe

hygrometer

(vertical wind est. accuracy 2.6 cm/s)

Winds, momentum fluxes, other fluxes \ :

Winglet catch
mechanism

Laser altimeter Surface waves, a/c control
Humidity/temperature H/T profiles and bulk fluxes
SST sensor SST, frontal processes

Fast response optical temp.

T, sensible heat flux

sensor

Krypton hygrometer H,O covariance fluxes

DAQ system Data acquisition

DGPS georeferencing, winds, a/c control
IMU — LN200 georeferencing, winds

* Relative vertical wind spectra, comparison with
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SIO ScanEagle UAS for air-sea interaction research

“Imaging” payload

fasr IR camera Data acquisition,
power supply

ik
HR digital video
“Radiometric™ payload

Pyrgeometers -
(2x)
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UC San Diego

Instrumentation Measurement

Laser Altimeter Surface waves, a/c control

Digital Video Camera Ocean surface processes, wave

kinematics and breaking

SST sensor SST,frontal processes

Humidity/Temperature H/T profiles and bulk fluxes

FLIR A325 LWIR SST, fronts, ocean surface

Camera processes
DAQ system Data acquisition
DGPS georeferencing, winds, a/c control

Instrumentation Measurement

Humidity/Temperature H/T profiles and bulk fluxes

Radiometers SST, radiation budget

SST sensor SST

Digital Video Camera Ocean surface processes,
wave kinematics and breaking

DAQ system Data acquisition

DGPS georeferencing, winds, a/c
control
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EquatorMix experiment overview OCEANOGRAPHY

UC San Diego

Deployment of instrumented ScanEagle UAVs from the R/V Revelle during the Papeete to Nuku Hiva, Tahiti
cruise (4 - 22 Oct., 2012; Jerome Smith, Chief Scientist)

ScanEagles will extend the capabilities of the research vessel by measuring air-sea fluxes, marine
atmospheric boundary layer (MABL) variables, and surface signatures of ocean boundary layer (OBL)
processes.

A. Air-sea Fluxes and the Marine Atmospheric Boundary Layer

- Measure momentum, heat, and moisture fluxes, atmospheric soundings, and surface wave measurements
- Measure spatial decorrelation scales of the air-sea fluxes and related MABL variables relative to the
research vessel.

B. Atmospheric Convection & Precipitation
- Measure horizontal entrainment velocities approaching the perimeter of convective cells
- Correlation of recently precipitated pools of cooler fresher water at the surface with the convective activity

C. The Diurnal Surface Layer
- Coordinated flights with fast CTD profiling the DSL (air-sea fluxes, waves, met.)

D. Surface Wave Processes and Mixing
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Coordinated effort with other assets, researchers
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R/V Revelle UAV launch and recovery equipment OCEANOGRAPHY

UC San Diego

Launcher

vertical line —
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Movie: EquatorMixSEVideo.mov OCEANOGRAPHY

UC San Diego
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Movie: 20121008RecoveryLong.mov OCEANOGRAPHY

At-sea recovery “as seen from the ScanEagle”




eSCRIPPS U

Photo composite: San Nguyen
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Ship-based UAV operations OCEANOGRAPHY

Inside the Ground Control Station:
F{. \T!E-__ ‘
UAV pilot workstatlons — ,.

Tracking antenna
(100 km line-of-sight)

Ground Control
Station (GCS)

Night operations

Scientific payload monitoring workstation
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Real-time Google Earth plotting sample: OCEANOGRAPHY

11-hr “Flux” pavload flight o

Google earth

Data: SIO, NOAA, U.S. Navy, NGA, GIEBCO

«— N7 | UAVirack ¢
S E | L] recovery Plot any variable as color
ship track along the flight track
Do ' Use for “on-the-fly” flight
mission planning

launch

Relative Humidity (%)
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UAV profiles of wind, temperature, water vapor OCEANOGRAPHY

UC San Diego

Vertical profiles upwind of the Revelle, during one 11-hr flight (taking off in the middle
of the night)
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Sample low-altitude (32-m) time series OCEANOGRAPHY

UC San Diego

Positive correlation between vertical wind and water vapor, temperature
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Sample low-altitude (32-m) flux calculations OCEANOGRAPHY

UC San Diego

» Integrated cospectra (high to low freq), “ogives”
« Asymptote at low frequency to covariance (with scalings noted)
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Planetary boundary layer rolls OCEANOGRAPHY

UC San Diego

« Large-scale (O(1 km)) persistent, coherent structures
« Often visible as "cloud streets" in satellite imagery
« Can account for large fraction of fluxes

Etling and Brown 1993



Planetary boundary layer rolls

Low-pass filtered (5-s cutoff) show 90-degree phase lag

Implies UAV flew across roll structures

Wlnd components from one 90- m cross W|nd fllqht
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UC San Diego
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Sample imagery, stacked ScanEagle flight OCEANOGRAPHY
» Visible and infrared imagery captured by Imaging payload L
(300 m AGL) "

» During vertically-stacked formation — Flux payload UAV
(30 m) in field of view

* Permits analyses of surface fluxes in the context of i ‘ "
surface kinematics =]

Visible

10-m wind = 9 m/s
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Summary: UAV-based atmospheric, oceanic measurements OCEANOGRAPHY
from research vessels

» Developed systems for measurement of momentum,
energy fluxes within atmospheric boundary layer from UAVs

» Permit coincident remote sensing measurements of surface
(imagery, IR, lidar)

« Advantages over manned aircraft experiments:
— Introduces no significant human risk during low-altitude flights

— Long endurance (> 11 hours)
— No transit time (already on-site right after take off)

* First direct air-sea flux measurements from
a ship-launched UAV during EquatorMix
off R/V Revelle

« 71 flight-hours were accumulated

over 12 days.

Reineman, B. D., L. Lenain, N. M. Statom, W. K. Melville, 2013. Development and testing of instrumentation for UAV-based flux
measurements within terrestrial and marine atmospheric boundary layers. J. Atmos. Oceanic Technol., In press
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Outlook: the future of ship-launched UAVs for atmospheric, OCEANOGRAPHY
oceanographic research

UC San Diego

Greatly extend the scientific reach of a research vessel

Low-altitude flights permit safe air-sea flux measurements
over large spatial scales, over long science missions

Extends reach of small research aircraft beyond coastal waters,
with no transit times

Real-time data monitoring allows for real-time mission planning
Can combine with simultaneous surface and subsurface ship measurements

photo: J. Smith s s ! » photo: ScanEagle

Next deployment? July 2013 on R/V Knorr, as part as a large field effort that also includes
surface wave gliders, underwater gliders, research aircraft, mooring and drifter deployments.



Trident Warrior 2013 (TW13), R/V Knorr July 13-18 2013

Employ unmanned systems in forward operating areas: demonstration experiment aboard R/
V Knorr

Autonomous vehicles:

Instrumented wavegliders (SPAWAR), SLOCUM (OSU,NRL), ScanEagles (SIO/NSWCDD),

met. and wave buoys (NPS, SIO), profiling balloon and kite radiosondes (NPS)
Science objectives, measurements:

— Time-varying 3D structure of MABL (vert. profiles wind, temp, humidity)

— Response of MABL to SST, subsurface structure, and visa versa

— Real-time data assimilation of measurements into Coupled Ocean/Atmosphere
Prediction System (COAMPS) (NPS, NRL)

— Electromagnetic propagation monitoring, model evaluation (SPAWAR, SIO)

Skyhook and launcher installation today/tomorrow on R/V Knorr!



EM propagation in evaporation ducts

* “Inversions” in the M-profile:
— blind zones, Height errors (3D radar)

— “Clutter rings,” lower signal to noise

« EM waves “trapped” in evaporation duct

http://www.youtube.com/

watch?
feature=player_embedded&v=
QjIxXRMWM5do

]

il

ol
300L350

Refractivity (M-unit/m)

150

100

300 350

Refractivity (M-unit/m)

> Om

‘ SCRIPPS INSTITUTION OF
VAFGiNIOORAHY

<130

«180

20 80 100 140
Range (km)

-110

<130

Range (km)

SUB-REFRACTION STANDARD REFRACTION

AN

SUPER-REFRACTION
< -79%km

-
TRAPPING

< -157%m _DUCT

) v STANDARD
-égoq\ TANGENT



eSCRIPPs,NST.m.ON o

ScanEagles in Trident Warrior 2013: demonstrate real-time OCEANOGRAPHY
nowcast and forecast

UC San Diego

Sample MABL over O(10) km range surrounding the ship
Capture spatial, temporal variability

Data transmitted back to Scripps in real-time, loaded to NRL’s Coupled Ocean/Atmosphere
Mesoscale Prediction System (COAMPS)

Generate M-profiles in near real-time!

“clutter rings” Yardim 2007
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UC San Dicgo



“Imaging” payload: visible and infrared imaging (ScanEagle only) ‘bégﬂg&{m{{g}

1" San Niron

« FLIR long-wave (7.5 — 13 ym) IR camera

IR
camera

SBC, SSDs,
power supply

! ! N ] A°C
2600 Wind: 8.2 m/s o = -
- |
£-2620 ot 0
- )
Visible 8 -0.05
camera @ -2640F
- ) e
» -0.1
©
> -2660
-2680
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T RH X distance (m)
H

* 190 m above Potomac River, 12 Apr 2012

« Langmuir circulation cells, 4 — 6 m spacing (water
depth = 3 m)

camera & Visible

camera

Reineman et al., 2013



ectromagnetic wave propagation: Modified refractivi r%eSCRIPPSINWWON or
Trident Warrior 2013 (TW13), RV Knorr July 13-18 2013~~~ OCEANOGRAPHY

UC San Diego

_ Spged of lightin vacuum  Temp.  Humidity M-profile
* Index of refraction, n = c¢/v

n = 1.000250 — 1.000400 EM velocity tandard
. » w < mosphere
« Refractivity, N=(n — 1) x10° - 4
C
N = N(Temperature, RH, Pressure) '% Al 1 Inversio
T ’ ‘ n
» Modified refractivity, M } { | Mixed
changes into a “flat earth” problem ' ‘ ‘ {layer
AM/Az = 0 — rays stay at const. altitude (curve Yardim 2007

downward at same rate as earth’s curvature)

SUB-REFRACTION STANDARD REFRACTION
AM/Az > 0 — rays bend up > Okm AN .

AZ
SUPER-REFRACTION
< - 9%km

TRAPPING

< -157%m _DUCT

AM/Az < 0 — rays bend down

from AREPS
Manual,
28 2005



