

Ship-based UAV measurements of the marine atmospheric boundary layer in the equatorial Pacific

Luc Lenain, Ken Melville, Ben Reineman and Nick Statom Scripps Institution of Oceanography

AGOR / UAS Scientific Demonstration Integration during the EquatorMix experiment

UNOLS FIC meeting – SIO, March 5 2013

Background - Air-sea interaction measurements from Unmanned OCEANOC Aerial Vehicles (UAV)

- Coupling of atmospheric and oceanic boundary layers plays important role in **local and global fluxes** of **mass, momentum, and energy**
- Air-sea fluxes are poorly understood, especially in **high wind and wave** environments (e.g., high latitude, extreme conditions, remote locations)

Aircraft provide an **efficient** way to measure small to mesoscale processes over **large spatial** ranges

SCRIPPS INSTITUTION OF

- To measure these surface processes, need to be close to the surface (<30 m)
- Transition to smaller, lighter, safer platforms, that can deployed from research vessels: Unmanned Aerial Vehicles (UAVs)

Boeing-Insitu ScanEagle UAV

- 2 3 kg payload, >11 hrs endurance
- Pneumatic launch, vertical line recovery
- Capable of ship-launch and recovery

Coincident remote sensing and measurements of energy and momentum fluxes

SIO ScanEagle UAS for air-sea interaction research

"Flux" payload

Instrumentation	Measurement		
9-port turbulence/gust probe	Winds, momentum fluxes, other fluxes		
	(vertical wind est. accuracy 2.6 cm/s)		
Laser altimeter	Surface waves, a/c control		
Humidity/temperature	H/T profiles and bulk fluxes		
SST sensor	SST, frontal processes		
Fast response optical temp.	T, sensible heat flux		
sensor			
Krypton hygrometer	H ₂ O covariance fluxes		
DAQ system	Data acquisition		
DGPS	georeferencing, winds, a/c control		
IMU – LN200	georeferencing, winds		
DAQ system DGPS IMU – LN200	Data acquisition georeferencing, winds, a/c control georeferencing, winds		

- Relative vertical wind spectra, comparison with CSAT3 sonic anemometers
- Instruments mounted on pickup truck

SIO ScanEagle UAS for air-sea interaction research

"Imaging" payload

Instrumentation	Measurement		
Laser Altimeter	Surface waves, a/c control		
Digital Video Camera	Ocean surface processes, wave		
	kinematics and breaking		
SST sensor	SST, frontal processes		
Humidity/Temperature	H/T profiles and bulk fluxes		
FLIR A325 LWIR	SST, fronts, ocean surface		
Camera	processes		
DAQ system	Data acquisition		
DGPS	georeferencing, winds, a/c control		

"Radiometric" payload			
		Instrumentation	Measurement
Pyrgeometers (2x)	Humidity/Temperature	H/T profiles and bulk fluxes	
		Radiometers	SST, radiation budget
		SST sensor	SST
	Digital Video Camera	Ocean surface processes,	
			wave kinematics and breaking
		DAQ system	Data acquisition
		DGPS	georeferencing, winds, a/c
		control	
	*		

EquatorMix experiment overview

Deployment of instrumented ScanEagle UAVs from the R/V *Revelle* during the Papeete to Nuku Hiva, Tahiti cruise (4 - 22 Oct., 2012; Jerome Smith, Chief Scientist)

ScanEagles will extend the capabilities of the research vessel by measuring air-sea fluxes, marine atmospheric boundary layer (MABL) variables, and surface signatures of ocean boundary layer (OBL) processes.

A. Air-sea Fluxes and the Marine Atmospheric Boundary Layer

- Measure momentum, heat, and moisture fluxes, atmospheric soundings, and surface wave measurements - Measure spatial decorrelation scales of the air-sea fluxes and related MABL variables relative to the research vessel.

B. Atmospheric Convection & Precipitation

- Measure horizontal entrainment velocities approaching the perimeter of convective cells
- Correlation of recently precipitated pools of cooler fresher water at the surface with the convective activity

C. The Diurnal Surface Layer

- Coordinated flights with fast CTD profiling the DSL (air-sea fluxes, waves, met.)

D. Surface Wave Processes and Mixing

R/V Revelle UAV launch and recovery equipment

Movie: EquatorMixSEVideo.mov

Movie: 20121008RecoveryLong.mov At-sea recovery "as seen from the ScanEagle"

Ship-based UAV operations

Inside the Ground Control Station:

Real-time Google Earth plotting sample: 11-hr "Flux" payload flight

20

Plot any variable as color along the flight track Use for "on-the-fly" flight mission planning

UAV profiles of wind, temperature, water vapor

SCRIPPS INSTITUTION OF OCEANOGRAPHY UC San Diego

Vertical profiles upwind of the *Revelle*, during one 11-hr flight (taking off in the middle of the night)

Sample low-altitude (32-m) time series

Positive correlation between vertical wind and water vapor, temperature

Sample low-altitude (32-m) flux calculations

- Integrated cospectra (high to low freq), "ogives"
- Asymptote at low frequency to covariance (with scalings noted)

- In agreement with bulk fluxes from shipbased observations
- Next step: resolve limitations of ship and UAV measurements

Sample imagery, stacked ScanEagle flight

- Visible and infrared imagery captured by Imaging payload (300 m AGL)
- During vertically-stacked formation Flux payload UAV ٠ (30 m) in field of view
- Permits analyses of surface fluxes in the context of ٠ surface kinematics

10-m wind = 9 m/s

100 m

SCRIPPS INSTITUTION OF

OCEANOGRAPHY UC San Diego

Reineman, B. D., L. Lenain, N. M. Statom, W. K. Melville, 2013. Development and testing of instrumentation for UAV-based flux measurements within terrestrial and marine atmospheric boundary layers. J. Atmos. Oceanic Technol., Accepted

Summary: UAV-based atmospheric, oceanic measurements from research vessels

- Developed systems for measurement of **momentum**, energy fluxes within atmospheric boundary layer from UAVs
- Permit coincident remote sensing measurements of surface (imagery, IR, lidar)
- Advantages over manned aircraft experiments:
 - Introduces no significant human risk during low-altitude flights
 - Long endurance (> 11 hours)
 - No transit time (already on-site right after take off)
- First direct air-sea flux measurements from a ship-launched UAV during EquatorMix off R/V Revelle
- 71 flight-hours were accumulated over 12 days.

Outlook: the future of ship-launched UAVs for atmospheric, oceanographic research

- Greatly extend the scientific reach of a research vessel
- Low-altitude flights permit **safe** air-sea flux measurements over **large spatial scales**, over long science missions
- Extends reach of small research aircraft beyond coastal waters, with no transit times
- Real-time data monitoring allows for real-time mission planning
- Can combine with simultaneous surface and subsurface ship measurements

Next deployment? July 2013 on R/V Knorr, as part as a large field effort that also includes wave gliders, underwater gliders, research aircraft, mooring and drifter deployments.